Как сохранить жизненную энергию. Как сохранять жизненную энергию и избавиться от стресса

💖 Нравится? Поделись с друзьями ссылкой

Энергетика человека.. Как её сохранить и повысить?.. Что такое — энергетика человека (жизненная сила)?.. Можно ли ее сохранить, укрепить или повысить?.. Какие факторы влияют на ее ослабление или усиление?..

Уверен, что многие из нас задавались этим вопросом, особенно в моменты, когда не все складывалось так, как задумано..Наступала череда неудач — ощущался упадок сил.. Какие же основные моменты, влияют на энергетику человека?..
Исходя из определяющих понятий космоэнергетики — энергия может как приходить, так и уходить в прошлое, настоящее или будущее..

Прошлое

Если мы часто переживаем о каких-то событиях или людях, оставивших след в нашей памяти в прошлом, мы тем самым позволяем нашей жизненной силе, вообщем, рассеиваясь попусту, уходить в прошлое, не принося, собственно, ни вреда, ни пользы.. Речь идет не о том, чтобы никогда и ничего не вспоминать, а имеется в виду избыточное подключение эмоций.. Сильная горечь утраты, обиды и несправедливость, содеянная вами, или кем — то еще.. Если же вы с грустью вспоминаете о близком вам человеке, ушедшем в мир иной — это вполне понятная человеческая реакция.. Но, если эти воспоминания бесконечно-постоянны и эмоциональны то, вы тем самым отдаете свою энергию..Это не просто нехорошо, но и опасно..

Настоящее

Похожая ситуация.. Как только у вас появляются сильные эмоции, думая о чем-то, так сразу происходит утечка энергии.. И не имеет значения, какие это эмоции, хоть положительные, хоть отрицательные — результат одинаковый, ваша энергетика ослабевает..известны случаи, когда человек терял сознание от неожиданной, большой радости, т.к. при этом происходит мгновенный выброс огромного количества энергии, одномоментная потеря которого и является критической для организма..

Будущее

Жизненная сила человека так же может уходить в будущее, при постоянном акцентировании своего внимания на каком-то событии в будущем при подключении сильных эмоций.. Особенно вредно внутреннее разногласие сознательного и подсознательного, при котором вы осзнанно хотите, чтобы сбылось какое-то событие, но на подсознательном уровне понимаете, что этого не будет (не путать с тоном «намерение» и «постулаты»).. Или наоборот. Хотите, чтобы что-то не сбылось, но, знаете что это неизбежно..

Энергетика человека так же может сильно пострадать и в том случае, когда к вам подключаются энергетические вампиры..

Солнечные вампиры

Это типичные скандалисты.. Вызывая вас на скандал, эти люди жаждут подпитаться вашей энергией.. Как только вы вспылили им в ответ — тут же происходит отбор энергии..

И совсем не обязательно, что вампиры делают это осознанно.. Скорее бывает даже наоборот (тон «скрытая враждебность»).. Редко бывает, чтобы вампир сознательно шел на скандал, с целью отобрать у вас вашу энергию.. Просто у этих людей по разным причинам энерготело потеряло способность накапливать и восстанавливать свою энергетику..

Лунные вампиры

Это как правило типичные нытики.. Они постоянно чем-то недовольны, им очень хочется поплакаться вам в жилетку (часто посредством телефонного разговора).. Как только вы начинаете вникать в их проблемы и подключаете соответствующие эмоции, тут же начинается отбор энергии.. Они тоже, как правило, делают это неосознанно..
Конечно не стоит становиться бездушными и черствыми людьми, но и превращать себя в емкость, куда любой желающий будет сливать свой негатив, не следует..

Скрытые недоброжелатели

Постарайтесь не хвастаться своим положением, обновками, даже успехами супруга или детей.. Всегда найдется человек, который начнет вам завидовать.. А скрывают они это обычно очень неплохо.. Вы, годами общаясь с этим человеком, не будете подозревать, что в душе он вам завидует, или и того хуже..
Человек с сильной энергетикой, постоянно думая о вас со злобой и завистью способен пробить ваше биополе и внедрить свой негатив, ослабляя вашу энергетику..

Бывают так же люди, у которых жизненная сила наоборот фонтанирует как родник.. И если они ее не «отдадут», им становится плохо.. поэтому достаточно крепки супружеские пары, где жена донор, а муж вампир, и наоборот!..

Что еще может ослабить энергетику человека?..

Ваши мысли.. Вернее, важно учесть какого типа мысли у вас доминируют.. Естественно, мы все живые и не бездушные люди.. Все мы подвластны переменам настроения.. Иногда можем и вспылить, и поплакать.. Но, если у вас постоянно преобладают только негативные эмоции, имейте в виду — вы в зоне риска.. И не важно, объективные у вас причины для недовольства или надуманные, знайте, у вас силы уходят быстрее, чем организм их способен восполнить..

Еще хуже длительная, годами поддерживаемая на постоянном уровне эмоция негативного характера.. К сожалению, в большинстве случаев, это является причиной возникновения онкологических заболеваний.. Работая над собой, учитывая перечисленные причины падения уровня энергетики, вы в значительной степени обезопасите себя от многих неприятностей..

Как же повысить энергетику (жизненную силу)?..
Где ее взять?..
С чего начинается жизненная сила?..

Энергия начинает поступать в момент зарождения мысли..Когда человеку приходит мысль, вместе с ней приходит сила — готовность действовать.. Объединяясь, мы умножаем силу.. Замыкаясь в себе, преследуя только личные интересы, ограничиваем возможности..

Мысль — самый оптимальный формат трансляции информации, но требующий наличия определённых навыков личности.. С духовно нравственных аспектов, начинается и сама жизненная сила в человеке, да и не только в нём..Жизненная сила появляется тогда, когда человек имеет цель в жизни и главное, понимает, как ее достичь.. Люди сами притягивают к себе в свою жизнь то, о чем они думают и о чем мечтают..

Человек всегда должен понимать личную ответственность за свои дела и поступки.. Прав был Эйнштейн: «Жизнь — как вождение велосипеда. Чтобы сохранить равновесие, ты должен двигаться».

А если учесть, что мысли — материальны, то надо «шевелить мозгами», чтобы не «свалиться» «Душа обязана трудиться и день, и ночь и день, и ночь»…, известное высказывание Заболотского!!!

Все в мире действует благодаря энергии. Растут цветы, двигаются люди, облака плывут по небу, работают телефоны, компьютеры, летают самолеты. Энергию можно представить себе как пищу. Нет пищи, нет жизни.

И если энергию для техники нам представить проще — включил телефон на зарядку, он зарядился и работает, то энергию для жизни человека или растений представить сложнее. Это что-то невидимое и неосязаемое.

Но тем не менее, все равно энергия существует и отрицать это бессмысленно. Каждый из нас замечал хоть раз, что сил нет совсем, навалилась усталость, апатия, ничего не хочется. В худшем случае можно даже заболеть. Хочется спать, лениться, нечего не делать. Дело в том, что организм израсходовал много энергии и ему требуется пополнить резерв. Так как сказать словами он нам ничего не может, получается, что включается предохранитель и мы просто на какое-то время выпадаем из жизни, восстанавливая свой энергетический баланс.

А иногда бывает, что нам хочется горы свернуть, прыгать, бегать, петь, делать кучу дел одновременно и обнять весь мир. В такие моменты мы находимся в гармоничном состоянии, энергии у нас много и это выражается в повышенной активности.

Для того, чтобы перепады между этими состояниями не были резкими, так как за подъемом всегда следует спад, нужно знать законы и способы сохранения энергии .

Способоы сохранения энергии.

  1. Духовные практики (медитации, Рейки, молитвы) . Духовные практики позволяют нам погрузиться внутрь себя, отрешиться от суеты и приблизиться к божественному. Это придает смысл жизни и многим нашим действиям. Духовный человек ясно видит свой путь в жизни, знает от чего следует отказаться, а чему уделить больше внимания. Неважно, что вы выберете, любой из этих способов наполнит вас не только энергией, но и благостью и спокойствием.
  2. Йога. Йога — одна их немногих практик, которая не только не расходует энергию, как все активные виды спорта, но и наоборот накапливает ее. Регулярные занятия йогой позволяют не только подтянуть мышцы, придать телу силу, гибкость и растяжку. Йога медленно, но верно возвращает нам здоровье, полноту жизни, меняет наши привычки в сторону полезных. Но все это происходит постепенно. Не нужно ждать моментального эффекта. Йога — не молот, а тонкий инструмент.
  3. Питание полезными продуктами . Фрукты, овощи, много чистой воды прекрасно очищают организм. А когда организм очищен, ему проще бороться с болезнями. Если бороться с болезнями не нужно, то можно направить силы на восстановление организма, его омоложение и обновление. Энергии становится больше, улучшается внешний вид, кожа начинает сиять, разглаживается.
  4. Соблюдение поста и 36-ти часовые голодания на воде дают не менее прекрасный эффект. Во время голодания мы полностью позволяем нашему организму отдохнуть и вместо того, чтобы бесконечно переваривать пищу, он начинает утилизировать отходы, накопленные годами. Конечно поначалу может быть сложно 36 часов продержаться на одной воде, но если вы будете знать зачем вы это делаете, то у вас точно получится.
  5. Общение с природой успокаивает, снимает раздражение, напряжение, дарит покой и состояние покоя. Уверена, что никто еще не возвращался злым после прогулки в лесу или по берегу реки.
  6. Красивая музыка, мантры — великолепный способ очистить мысли, окружающее пространство и почувствовать спокойствие, умиротворение и очистить ум от мусора.
  7. Общение с теми людьми, которые уже достигли того, о чем вы мечтаете. Этот пункт поможет вам увидеть, что ваши мечты и желания более чем реальны. В процессе общения у вас может появиться множество идей, благодаря которым вы быстрее продвинетесь по намеченному вами пути. Плюс, такие люди заряжают энергией успеха.
  8. Свести к минимуму пустое общение. Пустые разговоры в живую, по телефону и в интернете отнимают массу энергии и сил. бывало у вас такое, что поговорив с человеком, начинается зевота, усталость, может заболеть голова, вам уже ничего не хочется делать? Если да, то значит в это время вы отдали свою энергию и теперь вам нужно восстанавливать ее.
  9. Время, проведенное с детьми или животными. Дети и животные — это часть природы, они чисты и неиспорчены. От них мы получаем искреннюю любовь, заботу и удовольствие от общения с ними. ОТ них мы заряжаемся положительными эмоциями. Не зря многие родители говорят, что даже если они очень сильно устали, пришли домой и увидели своего малыша, который тянет ручки и лопочет: «Мама», то всю усталость сразу как рукой снимает. Не зря существуют иппотерапия, кошкотератия, дельфинотерапия. Не ограничивайте свое общение с животными, это неиссякаемый источник удовольствия.
  10. Сон. И никогда не стоит забывать про сон или жертвовать им. Сон необходим нам как воздух. Без сна все системы жизнедеятельности выходят из строя, и мы не можем нормально существовать. Сон — это восполнение сил, это отдых, причем отдыхает не только тело, но и мозг, которому тоже нужно усвоить весь поток информации, разложить его по полочкам и рассортировать.

Способы сохранения энергии — это возможности быть здоровыми, активными, счастливыми, полными сил и желаний. Это пища для нашего тела, это наш двигатель вперед. Поэтому не стоит забывать о них. Выберите для себя наиболее подходящие вам и сохраняйте и преумножайте вашу энергию. Ведь она нужна не только вам, но вашим родным и близким людям.

www.atmanyoga.ru

И для души, я сегодня предлагаю Вам послушать волшебную композицию с красивым названием «Хрустальная грусть» и,посмотреть завораживающий видео клип.

Пожалуйста, не забудьте нажать на кнопочки социальных сетей - поделитесь с друзьями! Тем самым вы окажете мне огромную помощь в развитии блога.

  • Как восстановить женскую энергию.…
  • Маленькие секреты счастья и долголетия от…
  • Что произойдет, если вы будете делать…

105.26062015 Материалы Большой Сатаронтской библиотеки вновь доступны читателю. Они знакомят читателя с материалами последних исследований Звездных Лоцманов. Практически во всех мирах знают, чтобы обладать силой, надо уметь накапливать энергию.По сути, Сила это накопленная энергия….

Что такое Психическая Энергия, которая по сути является главной для нас и о ней идет речь? На этот вопрос можно ответить одним словом - она есть ВСЁ. Она пронизывает всю вселенную и содержится в каждом существе, в каждой молекуле, в каждом атоме. Она есть Всеначальная энергия, которая включает в себя все остальные энергии, являющиеся лишь её дифференциациями. Всеначальная энергия и Огненная энергия - едины. И все наименования, такие как сердечная, мыслительная и психическая есть лишь различные аспекты одной и той же основной энергии или энергии Бытия. Можно лишь сказать, что психическая энергия - это высшее качество энергии Всеначальной .

Ну хорошо. Для нас важно уметь работать с этой энергией. Повышать качество этой энергии значит убирать негатив, очищать энергию внутри нас.

Использовать силу природных стихий. На планете Земля их несколько и всех их можно активно использовать. Костёр, который выжигает в вас негатив, вода, которая смывает его. Земля, которая впитывает и зарывает его глубоко, а затем рассасывает.

Желательно Вы должны быть посвященной в этой стихии. Хотя в плане подзарядки это мало что играет… Собственно всё основывается на визуализации. Например: дует ветер и вы стоите. Визуализируйте (без разницы, открыты глаза или нет) что в потоке воздуха содержится некая голубая энергия. Вы вдыхаете её и также она проходит сквозь вас. Вытяните руки и разведите их в стороны. Визуализируйте, что при более сильных порывах ветра из вас «выбивается» ветром черные частицы негатива и всякого хлама и рассеиваются в воздухе. И на место этого негатива становится новая голубенькая энергия, которая Вас подзаряжает и придаёт Вам силы. Постойте так пару минут или сколько хотите.

Вот собственно моя методика, которой мне легче всего заряжаться и очищаться.

С некоторым старанием я порылся ещё в книгах и нашел ещё материалы на эту тему.

Так Гуру йоги Ар Сантема.сформулировал 12 природных законов , правил, которые показывают источники потери энергии.

1. Тебе надо — ты и делай.
Какой смысл делать что либо, что не приносит ни малейшей пользы для тебя самого? Результатом нашей деятельности должна быть хотя бы благодарность или чувство собственного достоинства. Энергия — это всегда награда нам за что-то. Если другие сгружают на нас свои заботы, мы никогда не получим от выполнения их работы должного удовольствия и соответственно воодушевления на новую работу.

2. Не просят — не лезь.
Часто мы руководствуясь благими намерениями пытаемся повлиять на выбор других людей, на их мышление и действия. Как и следует ожидать чаще всего в ответ мы не получаем никакой благодарности, а как раз осуждение. Не возможно научиться на чужих ошибках, каждый проходит путь своим собственным путем.

P. S. Родителям как раз и непонятна такая реакция детей. В душе бывшего ребенка, то есть теперь уже взрослого человека, накапливается столько разноречивых чувств к своим родителям. Когда негатива больше, то бывает, что родителей и бьют и из дома выгоняют. и такое бывает. Появляются обиженные родители и передачи Малахова на эту тему. ну а причина в общем для всех понятна.

3. Не обещай. Обещал — выполни.
Разве становимся ли мы свободней и богаче, если раздаем обещания? А если не выполняем обещания — это снижает репутацию человека.

P. S. это от нехватки внутренней силы. Её ещё называют о настоящему сильный человек никогда не будет обещать.

4. В просьбе не отказывай.
Когда нас просят, то это подразумевается благодарность за выполнение некой услуги. Эта благодарность помогает почувствовать собственную ценность, что служит для нас внутренней источником энергии самоуважения.

5. Не передавай информацию, пока не сделал её своей.
Будьте осторожны когда раскрываете другим свои цели и замыслы. Их порой нелепые замечания или приземленный рассудок может обрезать вам крылья и цели утратят былую значимость.
Не стоит советовать другим то, что ещё не опробовал на себе. Если ваше слово всегда будет основано на вашем опыте люди это будут ценить.

6. Не западай.
Очевидно, что когда мы привязываемся к чему то одному, мы тормозим свое развитие. Если мы топчимся по одному месту, то не получаем новой энергии.

7. Не ставь цель (Цель должна служить маяком).
Цель - это не во что врезаются, цель - это направление деятельности. Если вы будете видеть в целях некий конечный пункт, то по их достижении можете испытать опустошенность.
Самые лучшие цели — цели бесконечные, к примеру цель саморазвития.

8. Живи настоящим (счастливым), а не прошлым или будущим.
Энергию, дарованную сегодня, нужно направить на день сегодняшний. Лучшее, что мы можем сделать с прошлым и будущим, всегда можно сделать только сейчас.

9. Не осуждай, не критикуй.
Привычка критиковать — признак собственной заниженной самооценки. Критикуя других, мы вызываем у них негативную обратную реакцию.

10. У природы нет плохой погоды.
Если научиться видеть в неудачных попытках еще один проверенный не подходящий вариант, но не последний возможный, а в сложных обстоятельствах — среду для личного развития, то мы не будем попросту растрачивать энергию на оплакивание, а будем двигаться вперед.

11. Не мешай.
Говорите тогда, когда вас готовы слушать. Не навязываете себя людям. В таком случае вы всегда получите для себя нулевой положительный результат, а также понапрасну растратите энергию.

12. Всегда и везде спрашивай разрешение.
Проявляйте уважение к чужой собственности, интеллектуальной и физической. В противном случае готовьтесь к расходу энергии на оправдания.

Запись только открыта. Материалы на данную тему ещё появятся. Поговорим о философии воина. О философии безупречности.

Про: TokiAden

Хроники обитателей миров нашей галактики я веду на авторском блоге Полигон фэнтэзи. Авторский блог открыт в 2013 году. А в 2014-м открыл эзотерический сайт Грани реальности. Потому что мой дом, моя родина - вся галактика. Как устроены тонкие миры. Как работают законы мироздания. Что есть духовность, Творец, смысл Сущего... Поделится с читателем своим духовным опытом и знаниями о мире. Это мои цели.

Сохранение, восстановление и приумножение жизненной энергии и личной силы является одной из самых важных задач для каждого человека. От того настолько вы сильны энергетически и насколько вы умеете правильно использовать свою жизненную энергию и личную силу, будет зависеть, сможете ли вы реализовывать ваши жизненные цели, устремления и ценности.

Сможете ли вы противостоять проблемам и трудностям. Сможете ли вы очиститься от внутреннего негатива и оставаться на пути совершенствования души своей. Сохранение, восстановление и приумножение жизненной энергии и личной силы также как очищение, потребует от вас соблюдения определенной дисциплины, проявления настойчивости и постоянства.

Зачем нужно сохранять, восстанавливать и приумножать жизненную энергию?

Вы, наверное, заметили тот факт, что успешные и жизнерадостные люди всегда полны жизненной энергии и личной силы. Почему так происходит? Если вы проследите за жизненным ритмом успешных людей и увидите, чем заполнена их жизнь, то вы поймете почему. Успешные, счастливые и жизнерадостные люди посвящают свое время себе, своему духовному росту и своим прекрасным внутренним ценностям. Они очень ценят свое время, правильно распределяют его и не тратят его зря. Они постоянно созидаю, наслаждаются, творят и восхищаются.

Тоже происходит и с их жизненной энергией. Успешные люди постоянно приумножают жизненную энергию тем, что правильно распределяют ее и направляют ее на созидание своей системы ценностей и реализацию своих целей. Кроме того, успешные люди умеют в полной мере использовать источники жизненной энергии. А также успешные люди уверенно ограждают и защищают себя от возможной потери жизненной энергии. Вот поэтому жизненная энергия у таких людей всегда в избытке, и они прямо заражают ею окружающих людей.

Счастливые, успешные и жизнерадостные люди всегда притягивают к себе позитивных людей и благоприятные ситуации. Это отражение их прекрасного внутреннего мира! Вот почему так важно научиться сохранять, восстанавливать и приумножать жизненную энергию, если вы поставили себе цель добиться счастья, успеха и процветания. Для этого необходимо знать, каким образом происходит потеря жизненной энергии.

Почему уходит жизненная энергия?

Потеря жизненной энергии происходит тремя основными способами. Во-первых, вы тратите огромную часть жизненной энергии на поддержание своего внутреннего негатива, входящего в негативную группу.

Напоминаю, что в нее входят: низкая самооценка, последствия психологического насилия и разрушающих отношений, негативные воспоминания, самообман, всевозможные негативные программы, установки, запреты, штампы, блокировки, личные негативные эмоции, мысли и чувства, последствия негативных поступков и грехов. Во-вторых, жизненную энергию у вас забирают негативно настроенные к вам и окружающему миру люди и разрушающие отношения с ними. В-третьих, жизненная энергия уходит через попытки изменить и контролировать окружающий мир и людей.

Как сохранять жизненную энергию и защитить себя?

Ответ на этот вопрос очевиден на первый взгляд. Однако в жизни не все люди могут сохранять жизненную энергию, потому что не знают не только того, каким образом уходит энергия, но и того, как защитить себя от ее потери. Для того чтобы сохранить жизненную энергию необходимо очиститься от внутреннего негатива, освободиться от разрушающих вас отношений и от негативно настроенных к вам людей, а также оставить попытки изменить мир и людей. Как очищаться от негатива мы уже с вами разобрали. Как оставить попытки изменить людей и мир, тоже очевидно. Нужно понять одну простую истину - изменить можно только себя. Невозможно изменить другого человека, тем более весь мир.

Человек измениться сам, если захочет. Никто не сможет его заставить сделать это. Иначе вы можете положить на эту бесперспективную затею всю свою жизнь и здоровье и в итоге ничего не добьетесь. Нет, вы, конечно, добьетесь кое-чего, например, заработаете кучу болезней и останетесь в одиночестве. В любом случае, это ваш выбор. А вот как определить, что отношения разрушающие? Если при общении с кем-либо вы замечаете у себя упадок сил, сильную усталость, раздражение или даже агрессию, то это сигнал того, что вы теряете жизненную энергию. Подобные отношения являются разрушающими для вас.

Кроме того, необходимо знать каким образом уходит энергия через разрушающие отношения, и определять наличие подобных моментов в ваших отношениях с людьми. Итак, если человек применяет к вам психологическое насилие и провоцирует вас на скандал, борьбу, конфликты или наоборот пытается вызвать у вас жалость или сочувствие к себе - это прямая попытка забрать у вас жизненные силы и энергию.

Если человек пытается вас запугать, вызвать страх, боль и страдание, заставляет вас испытывать чувство вины, стыда, унижения, обиды, неуверенности, самоуничижения, или толкает вас на грехи или плохие поступки - это прямая попытка забрать у вас не только жизненную энергию, но и в некоторых случаях вашу жизнь или материальные ценности.

Если в ваших отношениях имеют место подобные проблемы, то самое время задуматься о прекращении таких отношений или существенном их ограничении, особенно в том случае, если вы не в состоянии противостоять потере жизненной энергии.

Если разрушающие отношения имеют место в отношениях с близкими родственниками или с людьми, с которыми вы не хотите или не можете по тем или иным уважительным причинам прекратить отношения, то нужно действовать следующим образом. Вам необходимо признать наличие проблемы и обозначить четкие личные границы таких отношений, при которых вы будете максимально защищены от потери жизненной энергии. Такими границами могут быть ограничение времени для общения, ограничения тем для обсуждения и введение определенных правил общения.

Приведу примеры таких правил.

  • Во-первых, общение должно происходить без унижений, оскорблений, насилия, давления, жалоб и не должно содержать любой другой негатив.
  • Во-вторых, общение может происходить в присутствии близких вам людей, положительно настроенных к вам.
  • В-третьих, общение не должно касаться вашей личной жизни.
  • В-четвертых, необходимо пресекать любые попытки контролировать вас. Кроме того, очень хорошо помогает сохранять жизненную энергию в разрушающих отношениях раздельное проживание на максимально далеком расстоянии друг от друга. Вы можете ввести свои правила общения, которые устраивают лично вас и требовать их исполнения. Чего ни в коем случае нельзя допускать в подобных ситуациях? Нельзя терпеть разрушающие вас отношения, насилие, несправедливость, жестокость и любой другой негатив. Нужно бороться за свою жизнь до конца. Не предавать себя. Вы можете использовать все доступные вам методы. Бояться и малодушничать в таких случаях не уместно и даже опасно для жизни.

Как восстанавливать жизненную энергию?

Для того чтобы восстанавливать жизненную энергию необходимо изучить источники ее возникновения, постоянно развивать их и пользоваться ими. Эти источники окружают вас, они всегда рядом с вами и доступны каждому из вас в любой момент времени. Нужно только ваше искреннее желание замечать и применять их в своей повседневной жизни. Основными источниками жизненной энергии и личной силы являются:

  • Благодарность, прощение, очищение себя от внутреннего негатива и совершенствование души своей.
  • Ваша прекрасная система внутренних ценностей.
  • Безграничная любовь к себе и вера в себя.
  • Любовь к жизни и тем радостям, которые она приносит вам в каждый момент времени.
  • Окружение себя позитивно настроенными людьми и гармоничными отношениями.
  • Общение с живой природой и животными.
  • Приобщение к культуре, искусству, музыке, к любому интересующему вас творчеству, окружение себя прекрасными ценностями, занятие любимым делом.
  • Ведение активного образа жизни: путешествия, прогулки, занятия спортом, оздоровляющие процедуры, здоровое правильное питание, дыхательные практики.

Как приумножать жизненную энергию?

Приумножать жизненную энергию можно только в том случае, если вы правильно используете ее. Другими словами, если вы защищаете себя от потери жизненной энергии, если вы бережно относитесь к источникам жизненной энергии и постоянно пользуетесь ими, если вы занимаете активную жизненную позицию в настоящем текущем моменте времени и используете все возможности текущего момента, то вы начинаете приумножать свою жизненную энергию и личную силу. Кроме того, вы должны научиться направлять свою жизненную энергию и личную силу на создание своих прекрасных внутренних ценностей, для достижения своих истинных целей в жизни, для создания самодостаточной самооценки.

Вы так же можете использовать свою жизненную энергию для созидания и развития своей личности, для развития любви к себе и другим людям, для самосовершенствования души своей. Если вы будете правильно использовать свою жизненную энергию и личную силу, она будет сохраняться и приумножаться самостоятельно, независимо от вас. При этом у вас всегда будет столько энергии, сколько вам необходимо для создания ваших прекрасных внутренних ценностей и духовного роста.

Экология потребления.Наука и техника:Одна из основных проблем альтернативной энергетики - неравномерность поступления ее из возобновляемых источников. Рассмотрим, каким образом можно накопить виды энергии (хотя для практического использования нам потом нужно будет превратить накопленную энергию либо в электричество, либо в тепло).

Одна из основных проблем альтернативной энергетики - неравномерность поступления ее из возобновляемых источников. Солнце светит только днем и в безоблачную погоду, ветер то дует, а то утихнет. Да и потребности в электроэнергии не постоянны, например, на освещение днем ее требуется меньше, вечером - больше. А людям нравится, когда по ночам города и деревни залиты огнями иллюминаций. Ну, или хотя бы просто улицы освещены. Вот и возникает задача - сохранить полученную энергию на какое-то время, чтобы использовать тогда, когда потребность в ней максимальна, а поступление недостаточно.

Существует 6 основных видов энергии: гравитационная, механическая, тепловая, химическая, электромагнитная и ядерная. К настоящему времени человечество научилось создавать искусственные аккумуляторы для энергии первых пяти видов (ну, если не считать, что имеющиеся запасы ядерного топлива имеют искусственное происхождение). Вот и рассмотрим, каким образом можно накопить и сохранить каждый из этих видов энергии (хотя для практического использования нам потом нужно будет превратить накопленную энергию либо в электричество, либо в тепло).

Накопители гравитационной энергии

В накопителях этого типа на этапе накопления энергии груз поднимается вверх, накапливая потенциальную энергию, а в нужный момент опускается обратно, возвращая эту энергию с пользой. Применение в качестве груза твёрдых тел или жидкостей вносит свои особенности в конструкции каждого типа. Промежуточное положение между ними занимает использование сыпучих веществ (песка, свинцовой дроби, мелких стальных шариков и т.п.).

Гравитационные твердотельные накопители энергии

Суть гравитационных механических накопителей состоит в том, что некий груз поднимается на высоту и в нужное время отпускается, заставляя по ходу вращаться ось генератора. Примером реализации такого способа накопления энергии может служить устройство, предложенное калифорнийской компанией Advanced Rail Energy Storage (ARES). Идея проста: в то время, когда солнечные батареи и ветряки производят достаточно много энергии, специальные тяжелые вагоны при помощи электромоторов загоняются на гору. Ночью и вечером, когда источников энергии недостаточно для обеспечения потребителей, вагоны спускаются вниз, и моторы, работающие как генераторы, возвращают накопленную энергию обратно в сеть.

Практически все механические накопители этого класса имеют очень простую конструкцию, а следовательно высокую надёжность и большой срок службы. Время хранения однажды запасённой энергии практически не ограничено, если только груз и элементы конструкции с течением времени не рассыплются от старости или коррозии.

Энергию, запасённую при поднятии твёрдых тел, можно высвободить за очень короткое время. Ограничение на получаемую с таких устройств мощность накладывает только ускорение свободного падения, определяющее максимальный темп нарастания скорости падающего груза.

К сожалению, удельная энергоёмкость таких устройств невелика и определяется классической формулой E = m · g · h. Таким образом, чтобы запасти энергию для нагрева 1 литра воды от 20°С до 100°С, надо поднять тонну груза как минимум на высоту 35 метров (или 10 тонн на 3.5 метра). Поэтому, когда возникает необходимость запасти энергии побольше, то это сразу приводит к необходимости создания громоздких и, как неизбежное следствие, дорогих сооружений.

Недостатком таких систем является также то, что путь, по которому движется груз, должен быть свободным и достаточно прямым, а также необходимо исключить возможность случайного попадания в эту область вещей, людей и животных.

Гравитационные жидкостные накопители

В отличие от твердотельных грузов, при использовании жидкостей нет необходимости в создании прямых шахт большого сечения на всю высоту подъёма - жидкость отлично перемещается и по изогнутым трубам, сечение которых должно быть лишь достаточным для прохождения по ним максимального расчётного потока. Поэтому верхний и нижний резервуары необязательно должны размещаться друг под другом, а могут быть разнесены на достаточно большое расстояние.

Именно к этому классу относятся гидроаккумулирующие электростанции (ГАЭС).

Существуют и менее масштабные гидравлические накопители гравитационной энергии. Вначале перекачиваем 10 т воды из подземного резервуара (колодца) в емкость на вышке. Затем вода из емкости под действием силы тяжести перетекает обратно в резервуар, вращая турбину с электрогенератором. Срок службы такого накопителя может составлять 20 и более лет. Достоинства: при использовании ветродвигателя последний может непосредственно приводить в движение водяной насос, вода из емкости на вышке может использоваться для других нужд.

К сожалению, гидравлические системы труднее поддерживать в должном техническом состоянии, чем твердотельные, - прежде всего это касается герметичности резервуаров и трубопроводов и исправности запорного и перекачивающего оборудования. И ещё одно важное условие - в моменты накопления и использования энергии рабочее тело (по крайней мере, его достаточно большая часть) должно находиться в жидком агрегатном состоянии, а не пребывать в виде льда или пара. Зато иногда в подобных накопителях возможно получение дополнительной даровой энергии, - скажем, при пополнении верхнего резервуара талыми или дождевыми водами.

Накопители механической энергии

Механическая энергия проявляется при взаимодей­ствии, движении отдельных тел или их частиц. К ней относят кинетическую энергию движения или вращения тела, энер­гию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин).

Гироскопические накопители энергии

В гироскопических накопителях энергия запасается в виде кинетической энергии быстро вращающегося маховика. Удельная энергия, запасаемая на каждый килограмм веса маховика, значительно больше той, что можно запасти в килограмме статического груза, даже подняв его на большую высоту, а последние высокотехнологичные разработки обещают плотность накопленной энергии, сравнимую с запасом химической энергии в единице массы наиболее эффективных видов химического топлива.

Другой огромный плюс маховика - это возможность быстрой отдачи или приёма очень большой мощности, ограниченной лишь пределом прочности материалов в случае механической передачи или «пропускной способностью» электрической, пневматической либо гидравлической передач.

К сожалению, маховики чувствительны к сотрясениям и поворотам в плоскостях, отличных от плоскости вращения, поскольку при этом возникают огромные гироскопические нагрузки, стремящиеся погнуть ось. К тому же время хранения накопленной маховиком энергии относительно невелико и для традиционных конструкций обычно составляет от нескольких секунд до нескольких часов. Далее потери энергии на трение становятся слишком заметными… Впрочем, современные технологии позволяют кардинально увеличить время хранения - вплоть до нескольких месяцев.

Наконец, ещё один неприятный момент - запасённая маховиком энергия прямо зависит от его скорости вращения, поэтому по мере накопления или отдачи энергии скорость вращения всё время меняется. В то же время в нагрузке очень часто требуется стабильная скорость вращения, не превышающая нескольких тысяч оборотов в минуту. По этой причине чисто механические системы передачи энергии на маховик и обратно могут оказаться слишком сложными в изготовлении. Иногда упростить ситуацию может электромеханическая передача с использованием мотор-генератора, размещённого на одном валу с маховиком или связанного с ним жёстким редуктором. Но тогда неизбежны потери энергии на нагрев проводов и обмоток, которые могут быть гораздо выше, чем потери на трение и проскальзывание в хороших вариаторах.

Особенно перспективны так называемые супермаховики, состоящие из витков стальной ленты, проволоки или высокопрочного синтетического волокна. Навивка может быть плотной, а может иметь специально оставленное пустое пространство. В последнем случае по мере раскручивания маховика витки ленты перемещаются от его центра к периферии вращения, изменяя момент инерции маховика, а если лента пружинная, то и запасая часть энергии в энергии упругой деформации пружины. В результате в таких маховиках скорость вращения не так прямо связана с накопленной энергией и гораздо стабильнее, чем в простейших цельнотелых конструкциях, а их энергоёмкость заметно больше.

Помимо большей энергоёмкости, они более безопасны в случае различных аварий, так как в отличии от осколков большого монолитного маховика, по своей энергии и разрушительной силе сравнимых с пушечными ядрами, обломки пружины обладают гораздо меньшей «поражающей способностью» и обычно достаточно эффективно тормозят лопнувший маховик за счёт трения о стенки корпуса. По этой же причине и современные цельнотелые маховики, рассчитанные на работу в режимах, близких к переделу прочности материала, часто изготавливаются не монолитными, а сплетёнными из тросов или волокон, пропитанных связующим веществом.

Современные конструкции с вакуумной камерой вращения и магнитным подвесом супермаховика из кевларового волокна обеспечивают плотность запасённой энергии более 5 МДж/кг, причём могут сохранять кинетическую энергию неделями и месяцами. По оптимистичным оценкам, использование для навивки сверхпрочного «суперкарбонового» волокна позволит увеличить скорость вращения и удельную плотность запасаемой энергии ещё во много раз - до 2-3 ГДж/кг (обещают, что одной раскрутки такого маховика весом 100-150 кг хватит для пробега в миллион километров и более, т.е. на фактически на всё время жизни автомобиля!). Однако стоимость этого волокна пока также во много раз превышает стоимость золота, так что подобные машины ещё не по карману даже арабским шейхам… Подробнее о маховичных накопителях можно почитать в книге Нурбея Гулиа.

Гирорезонансные накопители энергии

Эти накопители представляют собой тот же самый маховик, но выполненный из эластичного материала (например, резины). В результате у него появляются принципиально новые свойства. По мере нарастания оборотов на таком маховике начинают образовываться «выросты»-«лепестки» - сначала он превращается в эллипс, затем в «цветок» с тремя, четырьмя и более «лепестками»… При этом после начала образования «лепестков» скорость вращения маховика уже практически не меняется, а энергия запасается в резонансной волне упругой деформации материала маховика, формирующей эти «лепестки».

Такими конструкциями в конце 1970-х и начале 1980-х годов в Донецке занимался Н.З.Гармаш. Полученные им результаты впечатляют - по его оценкам, при рабочей скорости маховика, составляющей всего 7-8 тысяч об/мин, запасённой энергии было достаточно для того, чтобы автомобиль мог проехать 1500 км против 30 км с обычным маховиком тех же размеров. К сожалению, более свежие сведения об этом типе накопителей неизвестны.

Механические накопители с использованием сил упругости

Этот класс устройств обладает очень большой удельной ёмкостью запасаемой энергии. При необходимости соблюдения небольших габаритов (несколько сантиметров) его энергоёмкость - наибольшая среди механических накопителей. Если требования к массогабаритным характеристикам не столь жёсткие, то большие сверхскоростные маховики превосходят его по энергоёмкости, но они гораздо более чувствительны к внешним факторам и обладают намного меньшим временем хранения энергии.

Пружинные механические накопители

Сжатие и распрямление пружины способно обеспечить очень большой расход и поступление энергии в единицу времени - пожалуй, наибольшую механическую мощность среди всех типов накопителей энергии. Как и в маховиках, она ограничена лишь пределом прочноcти материалов, но пружины обычно реализуют рабочее поступательное движение непосредственно, а в маховиках без довольно сложной передачи не обойтись (не случайно в пневматическом оружии используются либо механические боевые пружины, либо баллончики с газом, которые по своей сути являются предварительно заряженными пневматическими пружинами; до появления огнестрельного оружия для боя на дистанции применялось также именно пружинное оружие - луки и арбалеты, ещё задолго до новой эры полностью вытеснившие в профессиональных войсках пращу с её кинетическим накоплением энергии).

Срок хранения накопленной энергии в сжатой пружине может составлять многие годы. Однако следует учитывать, что под действием постоянной деформации любой материал с течением времени накапливает усталость, а кристаллическая решётка металла пружины потихоньку изменяется, причём чем больше внутренние напряжения и чем выше окружающая температура, тем скорее и в большей степени это произойдёт. Поэтому через несколько десятилетий сжатая пружина, не изменившись внешне, может оказаться «разряженной» полностью или частично. Тем не менее, качественные стальные пружины, если они не подвергаются перегреву или переохлаждению, способны работать веками без видимой потери ёмкости. Например, старинные настенные механические часы с одного полного завода по-прежнему идут две недели - как и более полувека назад, когда они были изготовлены.

При необходимости постепенной равномерной «зарядки» и «разрядки» пружины обеспечивающий это механизм может оказаться весьма сложным и капризным (загляните в те же механические часы - по сути, множество шестерёнок и других деталей служат именно этой цели). Упростить ситуацию может электромеханическая передача, но она обычно накладывает существенные ограничения на мгновенную мощность такого устройства, а при работе с малыми мощностями (несколько сот ватт и менее) её КПД слишком низок. Отдельной задачей является накопление максимальной энергии в минимальном объёме, так как при этом возникают механические напряжения, близкие к пределу прочности используемых материалов, что требует особо тщательных расчётов и безупречного качества изготовления.

Говоря здесь о пружинах, нужно иметь в виду не только металлические, но и другие упругие цельнотелые элементы. Самые распространённые среди них - это резиновые жгуты. Кстати, по энергии, запасаемой на единицу массы, резина превосходит сталь в десятки раз, зато и служит она примерно во столько же раз меньше, причём, в отличии от стали, теряет свои свойства уже через несколько лет даже без активного использования и при идеальных внешних условиях - в силу относительно быстрого химического старения и деградации материала.

Газовые механические накопители

В этом классе устройств энергия накапливается за счёт упругости сжатого газа. При избытке энергии компрессор закачивает газ в баллон. Когда требуется использовать запасённую энергию, сжатый газ подаётся в турбину, непосредственно выполняющую необходимую механическую работу или вращающую электрогенератор. Вместо турбины можно использовать поршневой двигатель, который более эффективен при небольших мощностях (кстати, существуют и обратимые поршневые двигатели-компрессоры).

Практически каждый современный промышленный компрессор оснащён подобным аккумулятором - ресивером. Правда, давление там редко превышает 10 атм, и потому запас энергии в таком ресивере не очень большой, но и это обычно позволяет в несколько раз увеличить ресурс установки и сэкономить энергию.

Газ, сжатый до давления в десятки и сотни атмосфер, может обеспечить достаточно высокую удельную плотность запасённой энергии в течение практически неограниченного времени (месяцы, годы, а при высоком качестве ресивера и запорной арматуры - десятки лет, - недаром пневматическое оружие, использующее баллончики со сжатым газом, получило такое широкое распространение). Однако входящие в состав установки компрессор с турбиной или поршневой двигатель, - устройства достаточно сложные, капризные и имеющие весьма ограниченный ресурс.

Перспективной технологией создания запасов энергии является сжатие воздуха за счет доступной энергии в то время, когда непосредственная потребность в последней отсутствует. Сжатый воздух охлаждается и хранится при давлении 60-70 атмосфер. При необходимости расходовать запасенную энергию, воздух извлекается из накопителя, нагревается, а затем поступает в специальную газовую турбину, где энергия сжатого и нагретого воздуха вращает ступени турбины, вал которой соединен с электрическим генератором, выдающим электроэнергию в энергосистему.

Для хранения сжатого воздуха предлагается, например, использовать подходящие горные выработки или специально создаваемые подземные емкости в соляных породах. Концепция не нова, хранение сжатого воздуха в подземной пещере было запатентовано еще в 1948 году, а первый завод с накопителем энергии сжатого воздуха (CAES - compressed air energy storage) с мощностью 290 МВт работает на электростанции Huntorf в Германии с 1978 года. На этапе сжатия воздуха большое количество энергии теряется в виде тепла. Эта утерянная энергия должна быть компенсирована сжатому воздуху до этапа расширения в газовой турбине, для этого и используется углеводородное топливо, с помощью которого повышают температуру воздуха. Это значит, что установки имеют далеко не стопроцентный КПД.

Существует перспективное направление для повышения эффективности CAES. Оно заключается в удержании и сохранении тепла, выделяющегося при работе компрессора на этапе сжатия и охлаждения воздуха, с последующим его повторным использованием при обратном нагреве холодного воздуха (т.н. рекуперация). Тем не менее, этот вариант CAES имеет существенные технические сложности, особенно в направлении создания системы длительного сохранения тепла. В случае решения этих проблем, AA-CAES (Advanced Adiabatic-CAES) может проложить путь для крупномасштабных систем хранения энергии, проблема была поднята исследователями по всему миру.

Участники канадского стартапа Hydrostor предложили другое необычное решение - закачивать энергию в подводные пузыри.

Накопление тепловой энергии

В наших климатических условиях очень существенная (зачастую - основная) часть потребляемой энергии расходуется на обогрев. Поэтому было бы очень удобно аккумулировать в накопителе непосредственно тепло и затем получать его обратно. К сожалению, в большинстве случаев плотность запасённой энергии очень мала, а сроки её сохранения весьма ограничены.

Существуют тепловые аккумуляторы с твёрдым либо плавящимся теплоаккумулирующим материалом; жидкостные; паровые; термохимические; с электронагревательным элементом. Тепловые аккумуляторы могут подключаться в систему с твердотопливным котлом, в гелиосистему или комбинированную систему.

Накопление энергии за счёт теплоёмкости

В накопителях этого типа аккумулирование тепла осуществляется за счет теплоемкости вещества, служащего рабочим телом. Классическим примером теплового аккумулятора может служить русская печь. Ее протапливали один раз в день и она потом обогревала дом в течение суток. В наше время под тепловым аккумулятором чаще всего подразумевают ёмкости для хранения горячей воды, обшитые материалом с высокими теплоизоляционными свойствами.

Существуют теплоаккумуляторы и на основе твердых теплоносителей, например, в керамических кирпичах.

Различные вещества обладают разной теплоёмкостью. У большинства она находится в пределах от 0.1 до 2 кДж/(кг·К). Аномально большой теплоёмкостью обладает вода - её теплоёмкость в жидкой фазе составляет примерно 4.2 кДж/(кг·К). Более высокую теплоёмкость имеет только весьма экзотический литий - 4.4 кДж/(кг·К).

Однако помимо удельной теплоёмкости (по массе) надо учитывать и объёмную теплоёмкость, позволяющую определить, сколько тепла нужно, чтобы изменить на одну и ту же величину температуру одного и того же объёма различных веществ. Она вычисляется из обычной удельной (массовой) теплоёмкости умножением её на удельную плотность соответствующего вещества. На объёмную теплоёмкость следует ориентироваться тогда, когда важнее объём теплоаккумулятора, чем его вес.

Например, удельная теплоёмкость стали всего 0.46 кДж/(кг·К), но плотность 7800 кг/куб.м, а, скажем, у полипропилена - 1.9 кДж/(кг·К) - в 4 с лишним раза больше, однако плотность его составляет всего 900 кг/куб.м. Поэтому при одинаковом объёме сталь сможет запасти в 2.1 раза больше тепла, чем полипропилен, хотя и будет тяжелее почти в 9 раз. Впрочем, благодаря аномально большой теплоёмкости воды ни один материал не может превзойти её и по объёмной теплоёмкости. Однако объёмная теплоемкость железа и его сплавов (сталь, чугун) отличается от воды менее, чем на 20% - в одном кубическом метре они могут запасти более 3.5 МДж тепла на каждый градус изменения температуры, чуть-чуть меньше объёмная теплоёмкость у меди - 3.48 МДж/(куб.м·К). Теплоёмкость воздуха в нормальных условиях составляет примерно 1 кДж/кг, или 1.3 кДж/куб.м, поэтому чтобы нагреть кубометр воздуха на 1°, достаточно охладить на тот же градус чуть менее 1/3 литра воды (естественно, более горячей, чем воздух).

В силу простоты устройства (что может быть проще неподвижного сплошного куска твёрдого вещества либо закрытого резервуара с жидким теплоносителем?) подобные накопители энергии имеют практически неограниченное число циклов накопления-отдачи энергии и очень длительный срок службы - для жидких теплоносителей до высыхания жидкости либо до повреждения резервуара от коррозии или других причин, для твёрдотельных отсутствуют и эти ограничения. Но вот время хранения весьма ограничено и, как правило, составляет от нескольких часов до нескольких суток - на больший срок обычная теплоизоляция удержать тепло уже не способна, да и удельная плотность запасаемой энергии невелика.

Наконец, следует подчеркнуть ещё одно обстоятельство, - для эффективной работы важна не только теплоёмкость, но и теплопроводность вещества теплоаккумулятора. При высокой теплопроводности даже на достаточно быстрые изменения наружных условий теплоаккумулятор отреагирует всей своей массой, а следовательно и всей запасённой энергией - то есть максимально эффективно.

В случае же плохой теплопроводности среагировать успеет только поверхностная часть теплоаккумулятора, а до глубинных слоёв кратковременные изменения внешних условий просто не успеют дойти, и существенная часть вещества такого теплоаккумулятора будет фактически исключена из работы.

Полипропилен, упомянутый в рассмотренном чуть выше примере, имеет теплопроводность почти в 200 раз меньше, чем сталь, и потому, невзирая на достаточно большую удельную теплоёмкость, эффективным теплоаккумулятором быть не может. Впрочем, технически проблема легко решается организацией специальных каналов для циркуляции теплоносителя внутри теплоаккумулятора, но очевидно, что такое решение существенно усложняет конструкцию, снижает её надёжность и энергоёмкость и непременно будет требовать периодического техобслуживания, которое вряд ли нужно монолитному куску вещества.

Как это не покажется странным, иногда нужно бывает накапливать и хранить не тепло, а холод. В США уже более десяти лет работают компании, которые предлагают «аккумуляторы» на основе льда для установки в кондиционеры воздуха. В ночное время, когда электроэнергии в избытке и она продаётся по сниженным тарифам, кондиционер замораживает воду, то есть переходит в режим холодильника. В дневное время он потребляет в несколько раз меньше энергии, работая как вентилятор. Энергопрожорливый компрессор на это время отключается. .

Накопление энергии при смене фазового состояния вещества

Если внимательно посмотреть на тепловые параметры различных веществ, то можно увидеть, что при смене агрегатного состояния (плавлении-твердении, испарении-конденсации) происходит значительное поглощение или выделение энергии. Для большинства веществ тепловой энергии таких превращений достаточно, чтобы изменить температуру того же количества этого же вещества на многие десятки, а то и сотни градусов в тех диапазонах температур, где его агрегатное состояние не меняется. А ведь, как известно, пока агрегатное состояние всего объёма вещества не станет одним и тем же, его температура практически постоянна! Поэтому было бы очень заманчиво накапливать энергию за счёт смены агрегатного состояния - энергии накапливается много, а температура изменяется мало, так что в результате не потребуется решать проблемы, связанные с нагревом до высоких температур, и в то же время можно получить хорошую ёмкость такого теплоаккумулятора.

Плавление и кристаллизация

К сожалению, в настоящее время практически нет дешёвых, безопасных и устойчивых к разложению веществ с большой энергией фазового перехода, температура плавления которых лежала бы в наиболее актуальном диапазоне - примерно от +20°С до +50°С (максимум +70°С - это ещё относительно безопасная и легко достижимая температура). Как правило, в этом диапазоне температур плавятся сложные органические соединения, отнюдь не полезные для здоровья и зачастую быстро окисляющиеся на воздухе.

Пожалуй, наиболее подходящими веществами являются парафины, температура плавления большинства которых в зависимости от сорта лежит в диапазоне 40..65°С (правда, существуют и «жидкие» парафины с температурой плавления 27°С и менее, а также родственный парафинам природный озокерит, температура плавления которого лежит в пределах 58..100°С). И парафины, и озокерит вполне безопасны и используются в том числе и в медицинских целях для непосредственного прогрева больных мест на теле.

Однако при хорошей теплоёмкости теплопроводность их весьма мала - мала настолько, что приложенный к телу парафин или озокерит, нагретый до 50-60°С, ощущается лишь приятно горячим, но не обжигающим, как это было бы с водой, нагретой до той же температуры, - для медицины это хорошо, но для теплоаккумулятора это безусловный минус. Кроме того, эти вещества не так уж дёшевы, скажем, оптовая цена на озокерит в сентябре 2009 г. составляла порядка 200 рублей за килограмм, а килограмм парафина стоил от 25 рублей (технический) до 50 и выше (высокоочищенный пищевой, т.е. пригодный для использования при упаковке продуктов). Это оптовые цены для партий в несколько тонн, в розницу всё дороже как минимум раза в полтора.

В результате экономическая эффективность парафинового теплоаккумулятора оказывается под большим вопросом, - ведь килограмм-другой парафина или озокерита годится лишь для медицинского прогрева заломившей поясницы в течении пары десятков минут, а для обеспечения стабильной температуры более-менее просторного жилища в течении хотя бы суток масса парафинового теплоаккумулятора должна измеряться тоннами, так что его стоимость сразу приближается к стоимости легкового автомобиля (правда, нижнего ценового сегмента)!

Да и температура фазового перехода в идеале всё же должна точно соответствовать комфортному диапазону (20..25°С) - иначе всё равно придётся организовывать какую-то систему регулирования теплообмена. Тем не менее, температура плавления в районе 50..54°С, характерная для высокоочищенных парафинов, в сочетании с высокой теплотой фазового перехода (немногим более 200 кДж/кг) очень хорошо подходит для теплоаккумкулятора, рассчитанного на обеспечение горячего водоснабжения и водяного отопления, проблема лишь в невысокой теплопроводности и высокой цене парафина.

Зато в случае форс-мажора сам парафин можно использовать в качестве топлива с хорошей теплотворной способностью (хотя сделать это не так просто - в отличии от бензина или керосина, жидкий и тем более твёрдый парафин на воздухе не горит, обязательно нужен фитиль или другое устройство для подачи в зону горения не самого парафина, а только его паров)!

Примером накопителя тепловой энергии на основе эффекта плавления и кристаллизации может служить система хранения тепловой энергии TESS на основе кремния, которую разработала австралийская компания Latent Heat Storage.

Испарение и конденсация

Теплота испарения-конденсации, как правило, в несколько раз превышает теплоту плавления-кристаллизации. И вроде бы есть не так уж мало веществ, испаряющихся в нужном диапазоне температур. Помимо откровенно ядовитых сероуглерода, ацетона, этилового эфира и т.п., есть и этиловый спирт (его относительная безопасность ежедневно доказывается на личном примере миллионами алкоголиков по всему миру!). В нормальных условиях спирт кипит при 78°С, а его теплота испарения в 2.5 раза больше теплоты плавления воды (льда) и эквивалентна нагреву того же количества жидкой воды на 200°.

Однако в отличии от плавления, когда изменения объёма вещества редко превышают несколько процентов, при испарении пар занимает весь предоставленный ему объём. И если этот объём будет неограничен, то пар улетучится, безвозвратно унося с собой всю накопленную энергию. В замкнутом же объёме сразу начнёт расти давление, препятствуя испарению новых порций рабочего тела, как это имеет место в самой обычной скороварке, поэтому смену агрегатного состояния испытывает лишь небольшой процент рабочего вещества, остальное же продолжает нагреваться, находясь в жидкой фазе. Здесь открывается большое поле деятельности для изобретателей - создание эффективного теплоаккумулятора на основе испарения и конденсации с герметичным переменным рабочим объёмом.

Фазовые переходы второго рода

Помимо фазовых переходов, связанных с изменением агрегатного состояния, некоторые вещества и в рамках одного агрегатного состояния могут иметь несколько различных фазовых состояний. Смена таких фазовых состояний, как правило, также сопровождается заметным выделением или поглощением энергии, хотя обычно гораздо менее значительным, чем при изменении агрегатного состояния вещества. Кроме того, во многих случаях при подобных изменениях в отличии от смены агрегатного состояния имеет место температурный гистерезис - температуры прямого и обратного фазового перехода могут существенно различаться, иногда на десятки и даже на сотни градусов.

Электрические накопители энергии

Электричество - наиболее удобная и универсальная форма энергии в современном мире. Не удивительно, что именно накопители электрической энергии развиваются наиболее быстро. К сожалению, в большинстве случаев удельная ёмкость недорогих устройств невелика, а устройства с высокой удельной ёмкостью пока слишком дороги для хранения больших запасов энергии при массовом применении и весьма недолговечны.

Конденсаторы

Самые массовые «электрические» накопители энергии - это обычные радиотехнические конденсаторы. Они обладают огромной скоростью накопления и отдачи энергии - как правило, от нескольких тысяч до многих миллиардов полных циклов в секунду, и способны так работать в широком диапазоне температур многие годы, а то и десятилетия. Объединяя несколько конденсаторов параллельно, легко можно увеличить их суммарную ёмкость до нужной величины.

Конденсаторы можно разделить на два больших класса - неполярные (как правило, «сухие», т.е. не содержащие жидкого электролита) и полярные (обычно электролитические). Использование жидкого электролита обеспечивает существенно бóльшую удельную ёмкость, но почти всегда требует соблюдения полярности при подключении. Кроме того, электролитические конденсаторы часто более чувствительные к внешним условиям, прежде всего к температуре и имеют меньший срок службы (с течением времени электролит улетучивается и высыхает).

Однако у конденсаторов есть два основных недостатка. Во-первых, это весьма малая удельная плотность запасаемой энергии и потому небольшая (относительно других видов накопителей) ёмкость. Во-вторых, это малое время хранения, которое обычно исчисляется минутами и секундами и редко превышает несколько часов, а в некоторых случаях составляет лишь малые доли секунды. В результате область применения конденсаторов ограничивается различными электронными схемами и кратковременным накоплением, достаточным для выпрямления, коррекции и фильтрации тока в силовой электротехнике - на большее их пока не хватает.

Ионисторы

Ионисторы, которые иногда называют «суперконденсаторами», можно рассматривать как своего рода промежуточное звено между электролитическими конденсаторами и электрохимическими аккумуляторами. От первых они унаследовали практически неограниченное количество циклов заряда-разряда, а от вторых - относительно невысокие токи зарядки и разрядки (цикл полной зарядки-разрядки может длиться секунду, а то и намного дольше). Ёмкость их также находится в диапазоне между наиболее ёмкими конденсаторами и небольшими аккумуляторами - обычно запас энергии составляет от единиц до нескольких сотен джоулей.

Дополнительно следует отметить достаточно высокую чувствительность ионисторов к температуре и ограниченное время хранения заряда - от нескольких часов до нескольких недель максимум.

Электрохимические аккумуляторы

Электрохимические аккумуляторы были изобретены ещё на заре развития электротехники, и сейчас их можно встретить повсюду - от мобильного телефона до самолётов и кораблей. Вообще говоря, они работают на основе некоторых химических реакций и поэтому их можно было бы отнести к следующему разделу нашей статьи -«Химические накопители энергии». Но поскольку этот момент обычно не подчеркивается, а обращается внимание на то, что аккумуляторы накапливают электричество, рассмотрим их здесь.

Как правило, при необходимости запасать достаточно большую энергию - от нескольких сотен килоджоулей и более - используются свинцово-кислотные аккумуляторы (пример - любой автомобиль). Однако они имеют немалые габариты и, главное, вес. Если же требуется малый вес и мобильность устройства, то используются более современные типы аккумуляторов - никель-кадмиевые, металл-гидридные, литий-ионные, полимер-ионные и др. Они имеют гораздо более высокую удельную ёмкость, однако и удельная стоимость хранения энергии у них заметно выше, поэтому их применение обычно ограничивается относительно небольшими и экономичными устройствами, такими как мобильные телефоны, фото- и видеокамеры, ноутбуки и т.п.

В последнее время на гибридных автомобилях и электромобилях начали применяться мощные литий-ионные аккумуляторы. Помимо меньшего веса и большей удельной ёмкости, в отличие от свинцово-кислотных они позволяют практически полностью использовать свою номинальную ёмкость, считаются более надёжными и имеющими бóльший срок службы, а их энергетическая эффективность в полном цикле превышает 90%, в то время как энергетическая эффективность свинцовых аккумуляторов при заряде последних 20% ёмкости может падать до 50%.

По режиму использования электрохимические аккумуляторы (прежде всего мощные) также подразделяются на два больших класса - так называемые тяговые и стартовые. Обычно стартовый аккумулятор достаточно успешно может работать в качестве тягового (главное - контролировать степень разряда и не доводить его до такой глубины, которая допустима для тяговых аккумуляторов), а вот при обратном применении слишком большой ток нагрузки может очень быстро вывести тяговый аккумулятор из строя.

К недостаткам электрохимических аккумуляторов можно отнести весьма ограниченное число циклов заряда-разряда (в большинстве случаев от 250 до 2000, а при несоблюдении рекомендаций производителей - гораздо меньше), и даже при отсутствии активной эксплуатации большинство типов аккумуляторов через несколько лет деградируют, утрачивая свои потребительские свойства.

При этом срок службы многих видов аккумуляторов идёт не с начала их эксплуатации, а с момента изготовления. Кроме того, для электрохимических аккумуляторов характерны чувствительность к температуре, длительное время заряда, иногда в десятки раз превышающее время разряда, и необходимость соблюдения методики использования (недопущение глубокого разряда для свинцовых аккумуляторов и, наоборот, соблюдение полного цикла заряда-разряда для металл-гидридных и многих других типов аккумуляторов). Время хранения заряда также довольно ограничено - обычно от недели до года. У старых аккумуляторов уменьшается не только ёмкость, но и время хранения, причём и то, и другое может сократиться во много раз.

Разработки с целью создания новых типов электрических аккумуляторов и усовершенствования существующих устройств не прекращаются.

Химические накопители энергии

Химическая энергия - это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при хими­ческих реакциях между веществами. Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальваничес­ких элементах и аккумуляторах. Эти источники энергии ха­рактеризуются высоким КПД (до 98 %), но низкой емкостью.

Химические накопители энергии позволяют получать энергию как в том виде, из которого она запасалась, так и в любом другом. Можно выделить «топливные» и «безтопливные» разновидности. В отличии от низкотемпературных термохимических накопителей (о них чуть позже), которые могут запасти энергию, просто будучи помещёнными в достаточно тёплое место, здесь не обойтись без специальных технологий и высокотехнологичного оборудования, иногда весьма громоздкого. В частности, если в случае низкотемпературных термохимических реакций смесь реагентов обычно не разделяется и всегда находится в одной и той же ёмкости, реагенты для высокотемпературных реакций хранятся отдельно друг от друга и соединяются лишь тогда, когда нужно получить энергию.

Накопление энергии наработкой топлива

На этапе накопления энергии происходит химическая реакция, в результате которой восстанавливается топливо, например, из воды выделяется водород - прямым электролизом, в электрохимических ячейках с использованием катализатора или с помощью термического разложения, скажем, электрической дугой или сильно сконцентрированным солнечным светом. «Освободившийся» окислитель может быть собран отдельно (для кислорода это необходимо в условиях замкнутого изолированного объекта - под водой или в космосе) либо за ненадобностью «выброшен», поскольку в момент использования топлива этого окислителя будет вполне достаточно в окружающей среде и нет необходимости тратить место и средства на его организованное хранение.

На этапе извлечения энергии наработанное топливо окисляется с выделением энергии непосредственно в нужной форме, независимо от того, каким способом было получено это топливо. Например, водород может дать сразу тепло (при сжигании в горелке), механическую энергию (при подаче его в качестве топлива в двигатель внутреннего сгорания или турбину) либо электричество (при окислении в топливной ячейке). Как правило, такие реакции окисления требуют дополнительной инициации (поджига), что весьма удобно для управления процессом извлечения энергии.

Этот способ очень привлекателен независимостью этапов накопления энергии («зарядки») и её использования («разрядки»), высокой удельной ёмкостью запасаемой в топливе энергии (десятки мегаджоулей на каждый килограмм топлива) и возможностью длительного хранения (при обеспечении должной герметичности ёмкостей - многие годы). Однако его широкому распространению препятствует неполная отработанность и дороговизна технологии, высокая пожаро- и взрывоопасность на всех стадиях работы с таким топливом, и, как следствие, необходимость высокой квалификации персонала при обслуживании и эксплуатации этих систем. Несмотря на эти недостатки в мире разрабатываются различные установки, использующие водород в качестве резервного источника энергии.

Накопление энергии с помощью термохимических реакций

Давно и широко известна большая группа химических реакций, которые в закрытом сосуде при нагревании идут в одну сторону с поглощением энергии, а при охлаждении - в обратную с выделением энергии. Такие реакции часто называют термохимическими. Энергетическая эффективность таких реакций, как правило, меньше, чем при смене агрегатного состояния вещества, однако тоже весьма заметна.

Подобные термохимические реакции можно рассматривать как своего рода смену фазового состояния смеси реагентов, и проблемы здесь возникают примерно те же - трудно найти дешёвую, безопасную и эффективную смесь веществ, успешно действующую подобным образом в диапазоне температур от +20°С до +70°С. Впрочем, один подобный состав известен уже давно - это глауберова соль.

Мирабилит (он же глауберова соль, он же десятиводный сульфат натрия Na2SO4 · 10H2O) получают в результате элементарных химических реакций (например, при добавлении поваренной соли в серную кислоту) или добывают в «готовом виде» как полезное ископаемое.

С точки зрения аккумуляции тепла наиболее интересная особенность мирабилита заключается в том, что при повышении температуры выше 32°С связанная вода начинает освобождаться, и внешне это выглядит как «плавление» кристаллов, которые растворяются в выделившейся из них же воде. При снижении температуры до 32°С свободная вода вновь связывается в структуру кристаллогидрата - происходит «кристаллизация». Но самое главное - теплота этой реакции гидратации-дегидратации весьма велика и составляет 251 кДж/кг, что заметно выше теплоты «честного» плавления-кристаллизации парафинов, хотя и на треть меньше, чем теплота плавления льда (воды).

Таким образом, теплоаккумулятор на основе насыщенного раствора мирабилита (насыщенного именно при температуре выше 32°С) может эффективно поддерживать температуру на уровне 32°С с большим ресурсом накопления или отдачи энергии. Конечно, для полноценного горячего водоснабжения эта температура слишком низка (душ с такой температурой в лучшем случае воспринимается как «весьма прохладный»), но вот для подогрева воздуха такой температуры может оказаться вполне достаточно.

Безтопливное химическое накопление энергии

В данном случае на этапе «зарядки» из одних химических веществ образуются другие, и в ходе этого процесса в образующихся новых химических связях запасается энергия (скажем, гашёная известь при помощи нагрева переводится в негашёное состояние).

При «разрядке» происходит обратная реакция, сопровождаемая выделением ранее запасённой энергии (обычно в виде тепла, иногда дополнительно в виде газа, который можно подать в турбину) - в частности, именно это имеет место при «гашении» извести водой. В отличие от топливных методов, для начала реакции обычно достаточно просто соединить реагенты друг с другом - дополнительная инициация процесса (поджиг) не требуется.

По сути, это разновидность термохимической реакции, однако в отличии от низкотемпературных реакций, описанных при рассмотрении тепловых накопителей энергии и не требующих каких-то особых условий, здесь речь идёт о температурах в многие сотни, а то и тысячи градусов. В результате количество энергии, запасаемой в каждом килограмме рабочего вещества, существенно возрастает, но и оборудование во много раз сложнее, объёмнее и дороже, чем пустые пластиковые бутылки или простой бак для реагентов.

Необходимость расхода дополнительного вещества - скажем, воды для гашения извести - не является существенным недостатком (при необходимости можно собрать воду, выделяющуюся при переходе извести в негашёное состояние). А вот особые условия хранения этой самой негашёной извести, нарушение которых чревато не только химическими ожогами, но и взрывом, переводят этот и ему подобные способы в разряд тех, которые вряд ли выйдут в широкую жизнь.

Другие типы накопителей энергии

Помимо описанных выше, есть и другие типы накопителей энергии. Однако в настоящее время они весьма ограничены по плотности запасаемой энергии и времени её хранения при высокой удельной стоимости. Поэтому пока они больше применяются для развлечения, а их эксплуатация в сколько-нибудь серьёзных целях не рассматривается. Примером являются фосфорецирующие краски, запасающие энергию от яркого источника света и затем светящиеся в течение нескольких секунд, а то и долгих минут. Их современные модификации уже давно не содержат ядовитого фосфора и вполне безопасны даже для использования в детских игрушках.

Суперпроводящие накопители магнитной энергии хранят её в поле большой магнитной катушки с постоянным током. Она может быть преобразована в переменный электрический ток по мере необходимости. Низкотемпературные накопители охлаждаются жидким гелием и доступны для промышленных предприятий. Высокотемпературные накопители, охлаждаемые жидким водородом, всё ещё находятся в стадии разработки и могут стать доступны в будущем.

Суперпроводящие накопители магнитной энергии имеют значительные размеры и обычно используются в течение коротких периодов времени, например, во время переключений. опубликовано



Рассказать друзьям