Закономерности развития технических систем. Развитие всех систем идет в направлении увеличения степени идеальности

💖 Нравится? Поделись с друзьями ссылкой

Одной из предпосылок ТРИЗ является то, что существуют объективные законы развития и функционирования систем, опираясь на которые можно строить изобретательские решения. Другими словами, многие технические, производственные, экономические и социальные системы развиваются по одним и тем же правилам и принципам. Г. С. Альтшуллер обнаружил их, изучив патентный фонд и проанализировав пути развития и усовершенствования техники в течение долгого времени. Результаты, опубликованные в книгах ««Линии жизни» технических систем» и «О законах развития технических систем», позже объединенные в работе «Творчество как точная наука», стали базисом для Теории развития технических систем (ТРТС).

В данном уроке мы предлагаем вам познакомиться с этими законами, подкрепленными примерами. В программе обучения ТРИЗ они занимают главное место, поскольку раскрываются и детализируются в правилах их применения, в стандартах, принципах разрешения противоречий, вепольном анализе и АРИЗе.

Терминология и краткое введение

Закон развития технической системы (ЗРТС) - это существенное, устойчивое, повторяющееся отношение между элементами внутри системы и с внешней средой в процессе прогрессивного развития, перехода системы от одного состояния к другому с целью увеличения ее полезной функциональности.

Г. С. Альтшуллер открытые законы разделил на три раздела «Статику», «Кинематику», «Динамику». Названия эти условны и не имеют прямого отношения к физике. Но можно проследить связь этих групп с моделью «начала жизни-развития-смерти» в соответствии с законом S-образного развития технических систем, который автор предложил для полной картины эволюции процессов в технике. Она изображается логистической кривой, которая показывает меняющиеся со временем темпы развития. Этапов три:

1. «Детство». Конкретно в технике это длительный процесс проектирования системы, ее доработки, изготовления опытного образца, подготовки к серийному выпуску. В глобальном понимании этап связан с законами «Статики» - группой, объединенной критериями жизнеспособности возникающих технических систем (ТС). Говоря простым языком, благодаря этим законам можно дать ответы на два вопроса: Будет ли жить и функционировать создаваемая система? Что нужно сделать для того, чтобы она жила и функционировала?

2. «Расцвет». Этап бурного совершенствования системы, ее становления в качестве мощной и производительной единицы. Он связан со следующей группой законов - «Кинематикой», которая описывает направления развития технических систем вне зависимости от конкретных технических и физических механизмов. В буквальном понимании это означает те изменения, которые должны произойти в системе, чтобы она отвечала возрастающим к ней требованиям.

3. «Старость». С какого-то момента развитие системы замедляется, а позже прекращается вовсе. Это обусловлено законами «Динамики», характеризующими развитие ТС в условиях действия конкретных технических и физических факторов. «Динамика» противоположна «Кинематике» - законы этой группы определяют лишь возможные изменения, которые могут быть совершены в данных условиях. Когда возможности совершенствования исчерпаны, на смену старой системе приходит новая, и весь цикл повторяется.

Законы первых двух групп - «Статики» и «Кинематики» - универсальны по своему характеру. Они действуют в любую эпоху и применимы не только к техническим системам, но и к биологическим, социальным и т. д. «Динамика» же, по словам Альтшуллера, говорит об основных тенденциях функционирования систем именно в наше время.

Как пример действия комплекса этих законов в технике можно вспомнить развитие такой технической системы, как весельный флот. Она прошла становление от маленьких лодок с парой весел до крупных боевых кораблей, где сотни весел располагались в несколько рядов, уступив в результате место парусникам. В социальном и историческом плане примером S-образной системы может служить зарождение, процветание и упадок афинской демократии.

Статика

Законы «Статики» в ТРИЗ определяют начальную стадию функционирования технической системы, начало ее «жизни», определяя необходимые для этого условия. Сама категория «система» говорит нам о целом, составленном из частей. Техническая система, как и любая другая, начинает свою жизнь в результате синтеза отдельных компонентов. Но не всякое такое объединение дает жизнеспособную ТС. Законы группы «Статика» как раз и показывают, какие обязательные условия должны выполняться для успешной работоспособности системы.

Закон 1. Закон полноты частей системы. Необходимым условием принципиальной жизнеспособности технической системы является наличие и минимальная работоспособность основных частей системы.

Основных частей четыре: двигатель, трансмиссия, рабочий орган и орган управления. Для обеспечения жизнеспособности системы нужны не только эти части, но и их пригодность к выполнению функций ТС. Другими словами, эти составляющие должны быть работоспособными не только по отдельности, но и в системе. Классический пример - двигатель внутреннего сгорания, который работает сам по себе, функционирует в такой ТС как легковой автомобиль, но не пригоден для применения в подводной лодке.

Из закона полноты частей системы следует вывод: чтобы система была управляемой, необходимо, чтобы хотя бы одна ее часть была управляемой. Управляемость означает способность менять свойства в зависимости от предполагаемых заданий. Это следствие хорошо иллюстрирует пример из книги Ю. П. Саламатова «Система законов развития техники»: воздушный шар, управлять которым можно с помощью клапана и балласта.

Похожий закон был сформулирован в 1840 г. Ю. фон Либихом и для биологических систем.

Закон 2. Закон «энергетической проводимости» системы. Необходимым условием принципиальной жизнеспособности технической системы является сквозной проход энергии по всем частям системы.

Любая техническая система является преобразователем энергии. Отсюда очевидная необходимость передачи энергии от двигателя через трансмиссию к рабочему органу. Если какая-то часть ТС не будет получать энергии, то и вся система не будет работать. Главным условием эффективности технической системы с точки зрения энергопроводимости является равенство способностей частей системы по принятию и передаче энергии.

Из закона «энергетической проводимости» следует вывод: чтобы часть технической системы была управляемой, необходимо обеспечить энергетическую проводимость между этой частью и органами управления. Этот закон статики также является основой определения 3 правил энергопроводимости системы:

  1. Если элементы при взаимодействии друг с другом образуют систему, проводящую энергию с полезной функцией, то для повышения ее работоспособности в местах контакта должны быть вещества с близкими или одинаковыми уровнями развития.
  2. Если элементы системы при взаимодействии образуют энергопроводящую систему с вредной функцией, то для ее разрушения в местах контактирования элементов должны быть вещества с различными или противоположными уровнями развития.
  3. Если элементы при взаимодействии друг с другом образуют энергопроводящую систему с вредной и полезной функцией, то в местах контактирования элементов должны быть вещества, уровень развития которых и физико-химические свойства изменяются под воздействием какого-либо управляемого вещества или поля.

Закон 3. Закон согласования ритмики частей системы. Необходимым условием принципиальной жизнеспособности технической системы является согласование ритмики (частоты колебаний, периодичности) всех частей системы.

Теоретик ТРИЗ А. В. Тригуб уверен, что для устранения вредных явлений или усиления полезных свойств технической системы, необходимо согласовать или рассогласовать частоты колебаний всех подсистем в технической системе и внешних системах. Попросту говоря, для жизнеспособности системы важно, чтобы отдельные части не только работали вместе, но и не мешали друг другу выполнять полезную функцию.

Этот закон прослеживается на примере истории создания установки для дробления камней в почках. Данный аппарат дробит камни целенаправленным лучом ультразвука, чтобы в дальнейшем они выводились натуральным путем. Но изначально для разрушения камня требовалась большая мощность ультразвука, что поражало не только их, но и окружающие ткани. Решение пришло после того, как была согласована частота ультразвука с частотой колебания камней. Это вызывало резонанс, который и разрушал камни, благодаря чему мощность луча удалось уменьшить.

Кинематика

Группа законов ТРИЗ «Кинематика» имеет дело с уже образованными системами, которые проходят этап своего становления. Условие, как было сказано выше, кроется в том, что эти законы определяют развитие ТС, независимо от конкретных технических и физических факторов, его обусловливающих.

Закон 4. Закон увеличения степени идеальности системы. Развитие всех систем идет в направлении увеличения степени идеальности.

В классическом понимании идеальная система - это система, вес, объем, площадь которой стремятся к нулю, хотя ее способность выполнять работу при этом не уменьшается. Иначе говоря - это когда системы нет, а функция ее сохраняется и выполняется. Все ТС стремятся к идеальности, но идеальных очень мало. Образцом может служить сплав леса плотами, когда корабль для транспортировки не требуется, а функция доставки выполняется.

На практике можно найти множество примеров подтверждения данного закона. Предельный случай идеализации техники заключается в ее уменьшении (вплоть до исчезновения) при одновременном увеличении количества выполняемых ею функций. Например, первые поезда были больше чем сейчас, а пассажиров и грузов перевозили меньше. В дальнейшем габариты уменьшились, усилилась мощность, благодаря чему стала возможной перевозка больших объемов грузов и увеличение пассажиропотока, что привело и к снижению стоимости самой транспортировки.

Закон 5. Закон неравномерности развития частей системы. Развитие частей системы идет неравномерно; чем сложнее система, тем неравномернее развитие ее частей.

Неравномерность развития частей системы является причиной возникновения технических и физических противоречий, и, следовательно, изобретательских задач. Следствием данного закона является то, что рано или поздно изменение одной составляющей ТС спровоцирует цепную реакцию технических решений, которые приведут к изменению и оставшихся частей. Закон находит свое подтверждение в термодинамике. Так, в соответствии с принципом Онсагера: движущая сила любого процесса - это появление неоднородности в системе. Значительно раньше, чем в ТРИЗ, этот закон был описан в биологии: «В ходе прогрессивной эволюции возрастает взаимное приспособление органов, происходит координация изменений частей организма и идет аккумуляция корреляций общего значения».

Отличной иллюстрацией справедливости закона служит развитие автомобильной техники. Первые двигатели обеспечивали относительно небольшую по сегодняшним меркам скорость в 15-20 км/час. Установка двигателей большей мощности увеличила скорость, что со временем стало причиной замены колес на более широкие, изготовления кузова из более прочных материалов и т.д.

Закон 6. Закон опережающего развития рабочего органа. Желательно, чтобы рабочий орган опережал в своем развитии остальные части системы, то есть обладал большей степенью динамизации по веществу, энергии или организации.

Некоторые исследователи выделяют этот закон как отдельный, но многие труды выводят его в комплексе с законом неравномерности развития частей системы. Такой подход нам кажется более органичным, и мы выносим индивидуальный блок для данного закона лишь для большей структурированности и понятности.

Значение этого закона в том, что он указывает на распространенную ошибку, когда с целью увеличения полезности изобретения развивается не рабочий орган, а любой другой, например, управленческий (трансмиссия). Конкретный случай - чтобы создать многофункциональный игровой смартфон, нужно не просто сделать его удобным для держания в руке и оснастить большим дисплеем, а, в первую очередь, позаботиться о мощном процессоре.

Закон 7. Закон динамизации. Жесткие системы для повышения эффективности должны становиться динамичными, то есть переходить к более гибкой, быстро меняющейся структуре и к режиму работы, подстраивающемуся под изменения внешней среды.

Данный закон является универсальным и находит свое отображение во многих сферах. Степенью динамизации - способностью системы приспосабливаться к внешней среде - обладают не только технические системы. Когда-то такую адаптацию прошли биологические виды, вышедшие из воды на сушу. Изменяются и социальные системы: все больше компаний практикуют вместо офисной работы удаленную, а многие работники отдают предпочтение фрилансу.

Примеров из техники, подтверждающих данный закон, также множество. Свой облик за пару десятилетий поменяли мобильные телефоны. Причем изменения были не только количественными (уменьшение в размерах), но и качественными (увеличение функиональности, вплоть до перехода в надсистему - планшетофоны). Первые бритвенные станки «Gilette» имели неподвижную головку, которая позже стала более удобной движущейся. Еще один пример: в 30-е гг. в СССР выпускались быстрые танки БТ-5, которые по бездорожью двигались на гусеницах, а выехав на дорогу, сбрасывали их и шли на колесах.

Закон 8. Закон перехода в надсистему. Развитие системы, достигшей своего предела, может быть продолжено на уровне надсистемы.

Когда динамизация системы невозможна, другими словами, когда ТС полностью исчерпала свои возможности и дальнейших путей ее развития нет, система переходит в надсистему (НС). В ней она работает в качестве одной из частей; при этом дальнейшее развитие идет уже на уровне надсистемы. Переход происходит не всегда и ТС может оказаться мертвой, как, например, произошло с каменными орудиями труда первых людей. Система может не переходить в НС, а оставаться в состоянии, когда не может быть существенно усовершенствована, но сохранять жизнеспособность в силу необходимости этого людям. Примером такой технической системы служит велосипед.

Вариантом перехода системы в надсистему может быть создание би- и полисистем. Его еще называют законом перехода «моно - би - поли». Такие системы более надежны и функциональны, благодаря приобретаемым в результате синтеза качествам. После прохождения этапов би- и поли- наступает свертывание - либо ликвидация системы (каменный топор), поскольку она свое уже отслужила, либо переход ее в надсистему. Классический пример проявления: карандаш (моносистема) - карандаш с ластиком на конце (бисистема) - разноцветные карандаши (полисистема) - карандаш с циркулем или ручка (свертывание). Или бритва: с одним лезвием - с двумя - с тремя и более - бритва с вибрацией.

Этот закон является не только общим законом развития систем, схемой, по которой развивается все, но и законом природы, ведь симбиоз живых организмов с целью выживания известен с незапамятных времен. Как подтверждение: лишайники (симбиоз гриба и водорослей), членистоногие (рак-отшельник и актинии), люди (бактерии в желудке).

Динамика

«Динамика» объединяет законы развития ТС характерные для нашего времени и определяет возможные изменения в них в научно-технических условиях современности.

Закон 9. Закон перехода с макроуровня на микроуровень. Развитие рабочих органов системы идет сначала на макро-, а затем на микроуровне.

Суть заключается в том, что любая ТС для развития своего полезного функционала стремится перейти с макроуровня на микроуровень. Другими словами, в системах соблюдается тенденция перехода функции рабочего органа от колес, шестерней, валов и т. д. к молекулам, атомам, ионам, которые легко управляются полями. Это одна из главных тенденций развития всех современных технических систем.

Понятия «макроуровень» и «микроуровень» являются в данном отношении скорее условными и призваны показать уровни мышления человека, где первый уровень - что-то физически соизмеримое, а второй - понимаемое. В жизни любой ТС наступает момент, когда дальнейшее экстенсивное (увеличение полезной функции за счет изменений на макроуровне) развитие невозможно. Дальше систему можно развивать только интенсивно, за счет повышения организованности все более низких системных уровней вещества.

В технике переход между макро- и микроуровнями хорошо демонстрирует эволюция строительного материала - кирпича. Сначала это была просто организация формы глины для удобства. Но однажды человек забыл кирпич на пару часов на солнце, а когда вспомнил о нем - тот затвердел, что сделало его более надежным и практичным. Но со временем было замечено, что такой материал плохо держит тепло. Было совершено новое изобретение - теперь в кирпиче оставляли большое количество воздушных капилляров - микропустот, что существенно понизило его теплопроводность.

Закон 10. Закон повышения степени вепольности. Развитие технических систем идет в направлении увеличения степени вепольности.

Г. С. Альтшуллер писал: «Смысл этого закона заключается в том, что невепольные системы стремятся стать вепольными, а в вепольных системах развитие идет в направлении перехода от механических полей к электромагнитным; увеличения степени дисперсности веществ, числа связей между элементами и отзывчивости системы».

Веполь - (вещество+поле) - модель взаимодействия в минимальной технической системе. Это понятие абстрактное, применяемое в ТРИЗ для описания некоторого вида отношений. Под вепольностью стоит понимать управляемость. Дословно закон описывает вепольность как последовательность изменения структуры и элементов веполей с целью получения более управляемых технических систем, т.е. систем более идеальных. При этом в процессе изменения необходимо осуществлять согласование веществ, полей и структуры. Примером может служить диффузионная сварка и лазер для резки различных материалов.

В заключение отметим, что здесь собраны лишь описанные в литературе законы, в то время как теоретики ТРИЗ говорят о существовании и других, открыть и сформулировать которые еще предстоит.

Проверьте свои знания

Если вы хотите проверить свои знания по теме данного урока, можете пройти небольшой тест, состоящий из нескольких вопросов. В каждом вопросе правильным может быть только 1 вариант. После выбора вами одного из вариантов, система автоматически переходит к следующему вопросу. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что вопросы каждый раз разные, а варианты перемешиваются.

Итак, нужны приемы, позволяющие выявлять и устранять физические противоречия, содержащиеся в изобретательских задачах. Эти приемы позволяют резко сократить поисковое поле и без "поштучной" проверки отбросить множество "пустых" вариантов. Несколько приемов мы уже назвали: разделение противоречивых свойств в пространстве или во времени, использование переходых состояний веществ. А еще? Где взять набор приемов, достаточно богатый, чтобы решать самые различные изобретательские задачи? Ответ очевиден: ФП присущи только изобретательским задачам высших уровней, поэтому приемы устранения ФП надо искать в решениях этих задач. Практически это означает, что необходимо отобрать изобретения высших уровней и исследовать их описания. В таких описаниях обычно указаны исходная техническая система, ее недостатки и предлагаемая техническая система. Сопоставляя эти данные, можно выявить суть ФП и прием, использованный для его устранения.

Фонд описаний изобретений весьма велик: ежегодно в разных странах выдается около 300 тыс. патентов и авторских свидетельств. Для выявления современных приемов устранения ФП достаточно исследовать самый свежий "патентный слой" глубиной, скажем, в пять лет-это около 1,5 млн. изобретений. Цифра устрашающая. Однако первая же операция-отбор изобретений высших уровней - резко сокращает число описаний, подлежащих детальному исследованию. Изобретений пятого уровня очень мало - доли процента; четвертого уровня тоже немного - три - четыре процента. Если даже прихватить наиболее интересные изобретения третьего уровня, исследовать надо не более 10% изобретений в выделенном "патентном слое": 150 тыс. описаний. Это - в идеальном случае. Для составления списка наиболее сильных приемов достаточен массив в 20-30 тыс. патентных описаний. Хороший список приемов устранения ФП - уже немало. Но нужно уметь правильно выявлять противоречия, а также знать, когда и какой прием использовать, нужно располагать критериями для оценки полученных результатов. А для этого необходимо знать законы развития технических систем.

Развитие технических систем, как и любых других систем, подчиняется общим законам диалектики. Чтобы конкретизировать эти законы применительно именно к техническим системам, приходится опять-таки исследовать патентный фонд, но уже на значительно большую глубину. Нужно брать не "патентный слой", а, так сказать, "патентную скважину": патентные и историко-технические материалы, отражающие развитие какой-то одной системы за 100- 150 лет. Разумеется, для выявления универсальных законов нужна не одна, а многие "патентные скважины", - работа весьма и весьма сложная. Но, зная законы развития технических систем, можно уверенно отобрать наиболее эффективные приемы устранения противоречий и построить программу решения изобретательских задач.

Что такое объективные законы развития технических систем? Рассмотрим конкретный пример. Киносъемочный комплекс - типичная техническая система, включающая ряд элементов: киносъемочный аппарат, осветительные приборы, звукозаписывающую аппаратуру и т. д. Аппарат ведет съемку с частотой 24 кадра в секунду, причем при съемке каждого кадра затвор открыт очень небольшой промежуток времени, иногда всего одну тысячную секунды. А светильники работают на постоянном токе (или на переменном, но обладают большой тепловой инерцией) и освещают съемочную площадку все время. Таким образом, полезно используется незначительная часть энергии. В основном энергия расходуется на вредную работу: утомляет артистов, нагревает воздух.

Обратите внимание: основные элементы этой системы "живут" каждый в своем ритме. Представьте себе животное с мозгом, работающим по 24-часовому циклу, и лапами, предпочитающими действовать, скажем, по 10-часовому циклу: у мозга наступает время сна, а лапы бодрствуют, они полны сил, по их "часам" полдень, надо бегать... Эволюция безжалостно бракует такие организмы. Но в технике очень часто создают "организмы с несогласованной ритмикой" а потом долго мучаются из-за присущих им недостатков.

Один из объективных законов развития технических систем том, что системы с несогласованной ритмикой вытесняются более совершенными системами с согласованной ритмикой. Так в приведенном примере нужны безынерционные светильники, работающие синхронно и синфазно вращению шторки объектива. Тогда резко уменьшится расход энергии, улучшатся условия работы артистов.

Приведем пример из другой области техники. Для обеспечения выемки угля бурят в пласту скважины, заполняют их водой и передают через нее импульсы давления. Частота импульсов определяется случайными факторами, а пласт имеет свою частоту колебаний. Опять обе части системы работают в разных ритмах -явное нарушение закона согласования ритмики. И вот появляется а. с. № 317 797, в нем предлагается частоту импульсов установить равной собственной частоте колебаний угольного массива.

Изобретения ("просто импульсы" и "импульсы с частотой, равной собственной частоте разбуренного массива") разделены промежутком в семь лет. Эти семь потерянных лет-плата за незнание законов развития технических систем.

Согласование ритмики частей системы - лишь один из законов, определяющих развитие технических систем. Используя "свод" таких законов, можно построить программу решения изобретательских задач. Она даст возможность, не блуждая по поисковому полю, выйти в район решения, т. е. сократить число вариантов, скажем, до десятка.

Далее, казалось бы, совсем просто: надо рассмотреть десять вариантов и выбрать нужный. Но десять вариантов, полученных при переводе задачи на первый уровень, могут качественно отличаться от десяти вариантов, необходимых для решения задачи, которая с самого начала была задачей первого уровня. У "естественной" задачи первого уровня все варианты решения понятны изобретателю, они обычно прямо относятся к его специальности, не отпугивают своей сложностью. "Искусственная" задача первого уровня, полученная из задачи, скажем, четвертого уровня, может иметь решения "дикие" или выходящие за пределы знаний изобретателя. Предположим, анализ задачи отсек все "пустые" варианты, оставив только одну возможность: "Задачу удастся решить, если вращающаяся в сосуде жидкость будет прижиматься не к стенкам сосуда, а к его оси". Известно, что на вращающуюся жидкость действуют центробежные силы, направленные к стенкам сосуда. Скорее всего, изобретатель отбросит полученный вариант как явно противоречащий физике... Между тем существуют жидкости, в которых вопреки обычным представлениям -при вращении возникают центростремительные силы! Это явление называется эффектом Вайссенберга. Оно выходит за пределы вузовской физики для инженеров, поэтому не все инженеры о нем знают.

Для уверенного решения задач нужна информация о всей физике. Именно о всей, потому что решение трудных задач часто связано с использованием малоизвестных физических эффектов или малоизвестных нюансов обычных физических эффектов. Более того, вся физика должна быть представлена в таком виде, чтобы эффекты не приходилось перебирать подряд. Иными словами, нужна не просто физика, нужны таблицы, связывающие типы изобретательских задач (или типы противоречий) с соответствующими физическими эффектами. В таком же виде должны быть представлены и чисто изобретательские приемы, выявленные путем анализа патентных материалов.

Но и этого, мало. Нужно, чтобы изобретатель, действуя по программе, не боялся отбрасывать варианты, кажущиеся вероятными, и не боялся идти к идеям, кажущимся "дикими", т. е. необходимо управление психологическими факторами.

  • эффективная технология решения изобретательских задач может основываться только на сознательном использовании законов развития технических систем;
  • исходя из этих законов, можно построить программу решения изобретательских задач, позволяющую без перебора вариантов сводить задачи высших уровней к задачам первого уровня;
  • чтобы свести задачу высшего уровня к задаче первого уровня, нужно прежде всего найти физическое противоречие, поэтому программа должна содержать операторы, позволяющие по определенным правилам выявлять физическое противоречие;
  • для преодоления физических противоречий программа должна иметь информационный фонд, включающий фонд изобретательских приемов, выявленный путем анализа больших массивов современной патентной информации; фонд приемов должен быть представлен в виде таблиц использования приемов в зависимости от типа задачи или содержащегося в ней противоречия;
  • информационный фонд должен включать также таблицы применения физических эффектов;
  • программа должна иметь средства управления психологическими факторами, прежде всего средства активизации воображения и средства преодоления психологической инерции.

    Эта глава книги содержит ключевые моменты, которые при надлежащем развитии могли бы стать главным направлением развития ТРИЗ. В этой главе речь, по сути, идет о необходимости создания принципиально иных средств управления знаниями. Т.е. о том, что существующие знания должны быть представлены в таком виде, который был бы максимально пригоден для поиска именно того знания, которое необходимого для решения данной изобретательской задачи. Естественно, что и сама изобретательская задача должна быть определенным образом формализована, чтобы иметь четкие ориентиры для поиска нужных знаний. К сожалению, выйти на такой уровень методики решения изобретательских задач автору ТРИЗ, а также его последователям не удалось. (А.Б.)


3.3 Закон расширения множества потребностей-функций

Этот закон имеет отношение к развитию техники в целом отдельной страны или всего мира. В политэкономии уже давно известен закон возвышения потребностей, которые сформулирован на качественном уровне. Формулировка закона основывается на предшествующих работах и относится только к потребностям, реализуемым с помощью ТО:

При наличии необходимого потенциала и социально-экономической целесообразности возникшая новая потребность удовлетворяется с помощью впервые созданных технических средств (объектов); при этом возникает новая функция, которая затем существует как угодно долго, пока ее реализация будет обеспечивать и сохранение и улучшение жизни людей. Число таких качественно и количественно различающихся потребностей-функций, относящихся к техносфере страны или мира, со временем монотонно и ускоренно возрастает по экспоненциальному закону

где – число потребностей-функций до момента t =0: – эмпирический коэффициент;

t – время в годах.

3.4 Закон соответствия между функцией и структурой

Закон между функцией и структурой на протяжении многих веков изучали и обсуждали на философском уровне. При этом отмечали и анализировали многочисленные факты удивительных соответствий между выполненными функциями любого органа живого организма и его структурой (строением, конструкцией, конструктивными признаками). Такие же соответствия отмечались в деталях узлах машин, сооружений и других технических объектов.

Главная суть закона заключается в том, что в правильно спроектированном техническом объектом каждый элемент от сложных узлов до простых деталей и каждый конструктивный признак имеют вполне определенную функцию (назначение) по обеспечению работы технического объекта. И если лишить такой ТО какого-либо элемента или признака, то он либо перестанет работать (выполнять свою функцию), либо ухудшит показатели своей работы. В связи с этим у правильных ТО нет «лишних деталей». Эта главная суть соответствия между функцией и структурой лежит в основе всей познавательной деятельности, связанной с анализом и изучением существующих ТО и всей проектно-конструкторской деятельности по созданию новых ТО.

Каждый элемент ТО или его конструктивный признак имеют хотя бы одну функцию по обеспечению реализации функции ТО, т.е. исключение элемента или признака приводит к ухудшению какого-либо показателя ТО или прекращению выполнения им своей функции. Совокупность всех таких соответствий в ТО представляет собой функциональную структуру в виде ориентированного графа, который отражает системную целостность ТО и соответствие между его функцией и структурой (конструкцией).

Рассмотрим этот закон на примере функционального строения обрабатывающих (технологических) машин.

ТО или соответствующие человеко-машинные системы, предназначены для обработки материального предмета труда, состоят из четырех подсистем (элементов) , реализующих соответственно четыре фундаментальные функции, показанные на рисунке 2

Рисунок 2. Обобщенная функциональная структура обрабатываемых машин: => поток вещества, поток энергии, поток управляющих сигналов и воздействий

Ф1 – технологическая функция – обеспечивает превращение исходного материала (сырья) в конечный продукт ;

Ф2 – энергетическая функция – превращает вещество или извне полученную энергию в конечный вид энергии , необходимы для реализации функции Ф1;

Ф3 – функция управления – осуществляет управляющие воздействия , на подсистемы , в соответствии с заданной программой и полученной информацией , о количестве и качестве выбранного конечного продукта и конечной энергии ;

Ф4 – функция планирования – собирает (получает) информацию о произведенном конечном продукте и определяет потребные качественные и количественные характеристики конечного продукта.

Анализ функций различных ТО позволяет накапливать и формировать базы данных по формализованным описаниям функций элементов ТО и функциональным структурам ТО. Все эти базы данных могут быть эффективно использованы в различных методах поискового проектирования и конструирования, при проведении функционально-стоимостного анализа ТО технологий, построений информационно-поисковых систем для поддержки проектно-конструкторской деятельности.

    Вытеснение человека из технических систем

4.1 Закон стадийного развития техники

В техники революционные изменения связаны с передачей техническим средствам широко распространенных функций, выполняемых человеком. Закон стадийного развития техники отражает революционные изменения происходящие в процессе развития как отдельных классов ТО, так и техники в целом. Гипотеза о законе имеет на инженерном уровне следующую формулировку.

ТО с функцией обработки материального предмета труда имеют четыре стадии развития, связанные с последовательной реализацией с помощью технических средств четырех фундаментальных функций и последовательным исключением из технологического процесса соответствующих функций, выполняемых человеком:

на первой стадии ТО реализует только функцию обработки предмета труда (технологическая функция);

на второй стадии, наряду с технологической, ТО реализует еще функцию обеспечения энергией процесса обработки предмета труда (энергетическая функция);

на третий стадии ТО реализует еще функцию управления процессом обработки предмета труда;

на четвертой стадии ТО реализует также и функцию планирования для себя объема и качества продукции, получаемой в результате обработки предмета труда; при этом человек полностью исключается из технологического процесса, кроме более высоких уровней планирования.

Переход к каждой очередной стадии происходит при исчерпании природных возможностей человека в улучшении показателей выполнения соответствующей фундаментальной функции в направлении дальнейшего повышения производительности труда и (или) качества производимой продукции, а также при наличии необходимого научно-технического уровня и социально экономической целесообразности.

В таблице 2 приведены примеры стадийного развития различных ТО, которые дополняют формулировку закона. Рассматриваемый закон имеет определенную связь с закономерностью функционального строения обрабатывающих машин.

Таблица 2. примеры стадийного развития ТО

Функция ТО

ТФ+ЭФ+ФУ+ФП

Размалывание зерна

Получение осесеметричных круглых деталей из твердотельных заготовок

Транспортирование груза по дороге

Каменные жернова с ручным приводом

Токарный станок с рунным или ножным приводом

Тачка или тележка, приводимая в движение человеком

Каменные жернова с приводом от водяного колеса или паровой машины

Токарный станок с приводом от водяного колеса, паровой машины или электродвигателя

Телега, приводимая в движение тягловым животным или автомобиль

Мельница с системой автоматического управления (САУ)

Токарный станок с числовым программным управлением (ЧПУ)

Автомобиль с САУ

Мельница с САУ, получающая задания от автоматизированной системы планирования работ (АСПР)

Станок с ЧПУ, получающий задания от АСПР

Автомобиль с САУ, получающий задания от бортовой АСПР, осуществляющей предварительный сбор информации

Примечание. ТФ – технологическая функция; ЭФ – энергетическая функция; ФУ – функция управления; ФП – функция планирования.

Закон стадийного развития отражает также развитие мировой техники в целом, что наглядно показано в таблице 3 где обозначение «ТО» указывает на реализацию соответствующей фундаментальной функции техническими средствами.

Таблица 3. Стадии развития техники

Следует отметить, что предписываемая законом картина последовательного четырех стадийного развития ТО имеет место только для классов ТО, появившихся до XVIII века. Уже в XIX веке, когда техника в целом находилась на второй стадии развития, вновь появившиеся ТО одновременно реализовали технологическую и энергетическую функции, поскольку для этого существовал необходимы научно-технический уровень и это следовало из требований социально-экономических целесообразности. Аналогично картину мы наблюдаем в настоящее время, когда вновь появляющеюся пионерные ТО для реализации новых потребностей часто реализует сразу три фундаментальные функции (технологическую, энергетическую, управления).

4.2 Роботизация и законы робототехники

В данной работе мы рассмотрим законы роботостроения и робототехники лишь обзорно и не будем углубляется во все существующие проблемы данной индустрии.

В настоящее время автоматизация достигла такого уровня, при котором ТО выполняют не только функции по обработке материальных предметов, но и начинают выполнять обслуживанию и планированию. Человекоподобные роботы уже выполняют функции секретарей и гидов. Робототехника уже выделена в отдельную отрасль. Сегодня человечество практически вплотную подошло к тому моменту, когда роботы будут везде и всюду. Латентная, почти незаметная в быту эволюция роботов вот-вот выльется в самую настоящую революцию роботов . Или даже Великую Революцию Автоматизированной Экономики .

Законы робототехники еще только разрабатываются. Сейчас многие ученые стараются выработать законы развития роботов и законы взаимодействия человека с роботом. Эти законы могут сыграть важную роль в будущем.

    Робот не может причинить вред человеку или своим бездействием допустить, чтобы человеку был причинён вред (A robot may not injure a human being or, through inaction, allow a human being to come to harm)

    Робот должен повиноваться всем приказам, которые дает человек, кроме тех случаев, когда эти приказы противоречат Первому Закону (A robot must obey orders given to it by human beings, except where such orders would conflict with the First Law)

    Робот должен заботиться о своей безопасности в той мере, в которой это не противоречит Первому и Второму Законам (A robot must protect its own existence as long as such protection does not conflict with the First or Second Law).

Значительно позже, в 1986 году, Азимов дополнил этот свод законов ещё одним, нулевым правилом:

    Робот не может нанести вред человечеству или своим бездействием допустить, чтобы человечеству был причинён вред (A robot may not harm humanity, or, by inaction, allow humanity to come to harm)

Согласно статистической информации, собранной учёными проекта PHRIENDS (Physical Human-Robot Interation: DepENDability and Safety, то есть, Физическое взаимодействие людей и роботов: Надёжность и Безопасность), сегодняшние «гражданские» роботы в большинстве случаев безопасны лишь когда изолированы от доступа человека или когда передвигаются достаточно медленно. То есть, ни о каком соблюдении требований Первого (и Нулевого) Законов Робототехники пока и речи быть не может.

Сейчас ведутся активные разработки по обеспечению безопасности. В частности, сейчас учёные занимаются работой над прототипом исполнительного механизма под названием Variable Stiffness Actuator (VSA) с мехатронным (электронно-мехиническим) дизайном, позволяющим создавать лёгкие и менее «жёсткие» конечности роботов. Возможно, чем-то подобным будут оснащаться эти самые «робоняньки для престарелых», но на первое время подобные манипуляторы будут очень даже к месту на обычном производстве, где роботы и люди по-прежнему вынуждены трудиться «плечом к плечу». Уж если кто и сможет сказать что-то дельное при разработке будущих мировых стандартов безопасности роботостроения, то без мнения этих учёных точно не обойтись.

Также в роботостроении существует закономерность согласно которой, роботы с каждым поколением приобретают все больше человеческих черт и признаков . Это связано с тем что человеку психологический проще находиться рядом с объектом, который обладает сходством с человеком, кроме того не за горами когда роботы начнут выполнять роль нянек для младенцев и пожилых людей, такие разработки уже активно ведутся.

Однако препятствием к очеловечиванию роботов препятствует феномен так называемой «долины жути». В 1970 году пионер японской робототехники Масахиро Мори описал явление, названное им «Букими но тани» – «Долина жути» (сейчас распространен англоязычный термин, Uncanny Valley). Доктор Мори предположил, что человекообразные роботы будут симпатичны нам до лишь определенного предела. Когда внешний вид и поведение таких механизмов достигнут почти полной реалистичности, человек станет испытывать к ним резкую неприязнь. Но как только будет достигнут полный реализм, наше восприятие снова сменится на положительное или нейтральное. Объясняется это тем, что мы склонны испытывать симпатию к неодушевленным предметам, обнаруживающим сходство с человеком; обратная же ситуация, когда объект выглядит почти как человек, но демонстрирует явные признаки неодушевленного предмета, вызывает негативную реакцию, замешательство и страх. В 1978 году Мори объявил о подтверждении своей гипотезы, проведя ряд экспериментов при поддержке Токийского института технологий. Испытуемые добровольцы действительно охотнее проникались расположением к негуманоидным роботам, в то время как человекообразные автоматы чаще вызывали у них неприязнь.

Рисунок 3 Восприятие человека человекоподобных объектов

Таким образом, перед разработчиками роботов стоит еще очень большое количество проблем, поскольку многие законы и закономерности еще в роботостроение не установлены человеком еще или имеют не подтвержденный характер.

5. Прогнозирование развития технических систем

Если говорить, в общем, то прогнозирование развития техники в целом является очень сложной задачей, поскольку существующие законы техники не могут сказать каким будет уровень научно-технического развития через несколько лет. Так же тот же закон прогрессивной эволюции техники может установить как близко подошел тот или иной ТО к переходу на новый уровень. Прогнозирование с помощью S функции позволяет установить, насколько недоиспользованы возможности применяемого принципа действия Если эти возможности имеют значительные резервы, то на основе прогнозирования можно сформулировать задание на улучшение интересующих главный показателей. Если же прогноз покажет, что возможности принципа действия практически исчерпаны, то будет сделан обоснованный вывод о необходимости перехода на новый принцип действия. Но закон прогрессивной эволюции не может ответить каким будет новый принцип действия и когда именно произойдет переход.

Сейчас активно ведутся разработки по использованию законов развития биологии и переносе «патентов» природы для решения изобретательских задач.

Первым в 1964 г. высказал эту идею Г. Альтшуллер: «Как известно, бионика изучает животных с целью примене ния найденных принципов и приемов работы их органов к решению инженерно-технических задач. Однако современные животные – слишком сложные прообразы для современной техники. Это нередко затрудняет изучение «живых моделей», тормозит (а порой делает невозможным) создание технических аналогов. Между тем часто целесообразно брать в качестве прообразов вымерших ныне животных, изучаемых палеонтологией, так как они проще устроены. Другое преимущество такого подхода состоит в том, что во много раз расширяется круг прообразов, ибо современные животные – лишь незначительная часть фауны, существовавшей в течение всей истории Земли» .

Многие природные механизмы и «конструкции» сейчас применяются в авиа- и машиностроении, в робототехники, медицине.

Применительно к конкретному ТО можно проводить анализ на основе закона соответствия между функцией и структурой.

Этот анализ сводиться к следующему.

    Оценка функциональной ценности каждого элемента (узла или детали в машине, машины или станка в технологическом комплексе) с точки зрения его исключения и передачи его функций другому элементу.

    Выделение комплекса функций в целях их реализации одним автономным техническим средством

    Оценка целесообразности изменения потоковой функциональной системы и выбора более рациональной последовательности функциональных элементов.

    Оценка целесообразности разделения функций элементов, выполняющих две и более функции.

    Проверка полноты функциональной системы в соответствии с закономерностью функционального строения данного класса ТО. Оценка целесообразности введения новых функциональных элементов.

    Выделение функций, выполняемых человеком, и оценка возможности и целесообразности их выполнениями техническими средствами

    Оценка возможности использования функциональной системы ТО, выполняющих близкие и аналогичные функции и имеющих опережающие темпы развития по сравнению с разрабатываемым классом ТО.

Практическое использование закона стадийного развития связано с проведением исследований по его привязки к интересующему классу ТО, а также к функционально близкому классу ТО, имеющих опережающие темпы развития. При выполнении этих исследований даются ответы на следующие вопросы:

На какой стадии развития находиться рассматриваемый ТО или технологический комплекс?

Ограничивает ли возможности человека существенное улучшение основных показателей ТО?

Имеются ли необходимые научно-технические и технологические возможности для перехода на следующую стадию?

Имеется ли социально-экономическая целесообразность перехода на следующую стадию?

На основе такого анализа делается вывод о целесообразности перехода на следующую стадию и формируется соответствующее задание на научно-исследовательские и опытно-конструкторские разработки.

И так на основе имеющихся законов можно анализировать существующие конкретные технические объекты, устанавливать их уровень развития и прогнозировать их дальнейшее развитие. Но прогнозировать развитие техники в целом очень затруднительно и такой прогноз будет условным и неточным. В настоящее время еще не сложилась единая система законов развития техники и любых других систем. Будущим исследователям законов развития систем предстоит серьезно исследовать все имеющиеся материалы. Прежде всего, нужно исследовать самые древние системы. К ним в первую очередь относятся биологические системы. Может быть, следует даже исследовать еще более древние системы образования звезд, планет и космической системы и галактики. Должны быть исследованы различные виды культур, языки, религии, музыка, литература, искусства и т.д. Не менее интересно исследовать стремительно развивающиеся сегодня системы высоких технологий. Здесь тоже имеются свои закономерности. Особенно это касается микроэлектроники, компьютеров и программирования. В них наверняка имеются те закономерности, которые еще не выявлены.

Литература

1. Половкин А.И. Законы строения и развития техники. 3-е издание, переработанное и дополненное. Волгоград 1985 г.

2. Половкин А.И. Основы инженерного творчества. 2-е издание, переработанное и дополненное – М. Машиностроение, 1988. -368 с., ил.

3. Чешев В.В. О предмете и основных понятиях технических наук (гносеологический анализ). Автореферат диссертации на соискание ученой степени кандидата философских наук. Томск, 1968. с. 8 и 12.

4. Мелещенко Ю.С. Техника и закономерности ее развития. – Л.: Лениздат, 1970, 248 с

5. Альтшуллер Г.С. Как научиться изобретать. – Тамбов: Кн. изд., 1961,

6. Альтшуллер Г.С. О законах развития технических систем. – Баку, 20.01.1977.

7. Золотин. Б.Л., Зусман А.В. Законы развития и прогнозирования технических систем. Кишенев, Прогресс, 1989 г.

8. Петров В.М. Закономерности развития технических систем. – Методология и методы технического творчества. – Тезисы докладов и сообщений к научно-практической конференции 30 июня – 2 июля 1984 г. – Новосибирск, 1984 г.

Систем Основные факторы развития личностиДоклад >> Психология

... развития и -включения индивида в систему ... закон : онтогенез (онто – один, генезис – развитие ) повторяет филогенез (фило – много, генезис – развитие ), т.е. развитие ... (индивидуальном развитии ) основных этапов... главе, с развитием технического базиса производства...

Открыл законы развития технических систем, знание которых помогаeт инженерам предсказывать пути возможных дальнейших улучшений продуктов:

  1. Закон увеличения степени идеальности системы.
  2. Закон S-образного развития технических систем.
  3. Закон динамизации.
  4. Закон полноты частей системы.
  5. Закон сквозного прохода энергии.
  6. Закон опережающего развития рабочего органа.
  7. Закон перехода «моно - би - поли».
  8. Закон перехода с макро- на микроуровень.

Самый важный закон рассматривает идеальность - одно из базовых понятий в ТРИЗ.

Описание законов

Закон увеличения степени идеальности системы

Техническая система в своём развитии приближается к . Достигнув идеала, система должна исчезнуть, а её функция продолжать выполняться.

Основные пути приближения к идеалу:

  • повышение количества выполняемых функций,
  • «свертывание» в рабочий орган,
  • переход в надсистему.

При приближении к идеалу техническая система вначале борется с силами природы, затем приспосабливается к ним и, наконец, использует их для своих целей.

Закон увеличения идеальности наиболее эффективно применяется к тому элементу, который непосредственно расположен в зоне возникновения конфликта или сам порождает нежелательные явления. При этом повышение степени идеальности, как правило, осуществляется применением незадействованных ранее ресурсов (веществ, полей), имеющихся в зоне возникновения задачи. Чем дальше от зоны возникновения конфликта будут взяты ресурсы, тем в меньшей степени удастся продвинуться к идеалу.

Закон S-образного развития технических систем

Эволюцию множества систем можно изобразить логистической кривой, показывающей, как меняются во времени темпы её развития. Выделяются три характерных этапа:

  1. «детство» . Идёт, как правило, достаточно долго. В этот момент идёт проектирование системы, её доработка, изготовление опытного образца, подготовка к серийному выпуску.
  2. «расцвет» . Она бурно совершенствуется, становится всё более мощной и производительной. Машина выпускается серийно, её качество улучшается и спрос на неё растёт.
  3. «старость» . С какого-то момента улучшать систему становится всё труднее. Мало помогают даже крупные увеличения ассигнований. Несмотря на усилия конструкторов, развитие системы не поспевает за всё возрастающими потребностями человека. Она пробуксовывает, топчется на месте, меняет свои внешние очертания, но остаётся такой, какая есть, со всеми своими недостатками. Все ресурсы окончательно выбраны. Если попытаться в этот момент искусственно увеличивать количественные показатели системы или развивать её габариты, оставляя прежний принцип, то сама система вступает в конфликт с окружающей средой и человеком. Она начинает больше приносить вреда, чем пользы.

В качестве примера рассмотрим . Вначале был достаточно долгий экспериментальный этап с единичными несовершенными экземплярами, внедрение которых вдобавок сопровождалось сопротивлением общества. Затем последовало бурное развитие термодинамики, совершенствование паровых машин, железных дорог, сервиса - и паровоз получает публичное признание и инвестиции в дальнейшее развитие. Затем, несмотря на активное финансирование, произошёл выход на природные ограничения: предельный тепловой , конфликт с окружающей средой, неспособность увеличивать мощность без увеличения массы - и, как следствие, в области начался технологический застой. И, наконец, произошло вытеснение паровозов более экономичными и мощными , и . достиг своего идеала - и исчез. Его функции взяли на себя и - тоже вначале несовершенные, затем бурно развивающиеся и, наконец, упирающиеся в развитии в свои природные пределы. Затем появится другая новая система - и так бесконечно.

Закон динамизации

Надёжность, стабильность и постоянство системы в динамичном окружении зависят от её способности изменяться. Развитие, а значит и жизнеспособность системы, определяется главным показателем: степенью динамизации , то есть способностью быть подвижной, гибкой, приспосабливаемой к внешней среде, меняющей не только свою геометрическую форму, но и форму движения своих частей, в первую очередь рабочего органа. Чем выше степень динамизации, тем, в общем случае, шире диапазон условий, при которых система сохраняет свою функцию. Например, чтобы заставить крыло самолёта эффективно работать в существенно разных режимах полёта (взлёт, крейсерский полёт, полёт на предельной скорости, посадка), его динамизируют путём добавления , системы изменения и проч.

Однако, для подсистем закон динамизации может нарушаться - иногда выгоднее искусственно уменьшить степень динамизации подсистемы, тем самым упростив её, а меньшую стойкость/приспособляемость компенсировать созданием стабильной искусственной среды вокруг неё, защищённой от внешних факторов. Но в итоге совокупная система (над-система) всё же получает б́ольшую степень динамизации. Например, вместо того, чтобы приспосабливать трансмиссию к загрязнению путём её динамизации (самоочистка, самосмазка, перебалансировка), можно поместить её в герметичный кожух, внутри которого создана среда, наиболее благоприятная для движущихся частей (прецизионные подшипники, масляный туман, подогрев и проч.)

Другие примеры:

  • В 10-20 раз снижается сопротивление движению , если его лемех вибрирует с определенной частотой в зависимости от свойств грунта.
  • Ковш экскаватора, превратившись в роторное колесо, породил новую высокоэффективную систему добычи полезных ископаемых.
  • Автомобильное из жёсткого деревянного диска с металлическим ободом стало подвижным, мягким и эластичным.

Закон полноты частей системы

Любая техническая система, самостоятельно выполняющая какую-либо функцию, имеет четыре основные части - двигатель, трансмиссию, рабочий орган и средство управления. Если в системе отсутствует какая-либо из этих частей, то её функцию выполняет человек или окружающая среда.

Двигатель - элемент технической системы, являющийся преобразователем энергии, необходимой для выполнения требуемой функции. Источник энергии может находиться либо в системе (например, бензин в баке для двигателя внутреннего сгорания автомобиля), либо в надсистеме (электроэнергия из внешней сети для электродвигателя станка).

Трансмиссия - элемент, передающий энергию от двигателя к рабочему органу с преобразованием её качественных характеристик (параметров).

Рабочий орган - элемент, передающий энергию на обрабатываемый объект, и завершающий выполнение требуемой функции.

Средство управления - элемент, регулирующий поток энергии к частям технической системы и согласующий их работу во времени и пространстве.

Анализируя любую автономно работающую систему, будь то холодильник, часы, телевизор или авторучка, везде можно видеть эти четыре элемента.

  • Фрезерный станок. Рабочий орган: фреза. Двигатель: электродвигатель станка. Всё что находится между электродвигателем и фрезой можно считать трансмиссией. Средство управления - человек-оператор, рукоятки и кнопки, или программное управление (станок с программным управлением). В последнем случае программное управление «вытеснило» человека-оператора из системы.

Закон сквозного прохода энергии

Итак, любая работающая система состоит из четырёх основных частей и любая из этих частей является потребителем и преобразователем энергии. Но мало преобразовать, надо ещё без потерь передать эту энергию от двигателя к рабочему органу, а от него - на обрабатываемый объект. Это закон сквозного прохода энергии. Нарушение этого закона ведёт к возникновению противоречий внутри технической системы, что в свою очередь порождает изобретательские задачи.

Главным условием эффективности технической системы с точки зрения энергопроводимости является равенство способностей частей частей системы по принятию и передаче энергии.

Первое правило энергопроводимости системы

полезной функцией , то для повышения её работоспособности в местах контактирования должны быть вещества с близкими или одинаковыми уровнями развития.

Второе правило энергопроводимости системы

Если элементы системы при взаимодействии образуют энергопроводящую систему с вредной функцией , то для её разрушения в местах контактирования элементов должны быть вещества с различными или противоположными уровнями развития.

  • При застывании бетон сцепляется с опалубкой, и её трудно потом отделить. Две части хорошо согласовались между собой по уровням развития вещества - оба твёрдые, шероховатые, неподвижные и т. д. Образовалась нормальная энергопроводящая система. Чтобы не допустить её образования, нужно максимальное рассогласование веществ, например: твёрдое - жидкое, шероховатое - скользкое, неподвижное - подвижное. Здесь может быть несколько конструктивных решений - образвание прослойки воды, нанесение специальных скользких покрытий, вибрация опалубки и др.

Третье правило энергопроводимости системы

Если элементы при взаимодействии друг с другом образуют энергопроводящую систему с вредной и полезной функцией , то в местах контактирования элементов должны быть вещества, уровень развития которых и физико-химические свойства изменяются под воздействием какого-либо управляемого вещества или поля.

  • Согласно этому правилу выполнено большинство устройств в технике, где требуется соединять и разъединять энергопотоки в системе. Это различные муфты включения в механике, вентили в гидравлике, диоды в электронике и многое другое.

Закон опережающего развития рабочего органа

В технической системе основной элемент - рабочий орган. И чтобы его функция была выполнена нормально, его способности по усвоению и пропусканию энергии должны быть не меньше, чем двигатель и трансмиссия. Иначе он или сломается, или станет неэфффективным, переводя значительную часть энергии в бесполезное тепло. Поэтому желательно, чтобы рабочий орган опережал в своём развитии остальные части системы, то есть обладал большей степенью динамизации по веществу, энергии или организации.

Часто изобретатели совершают ошибку, упорно развивая трансмиссию, управление, но не рабочий орган. Такая техника, как правило, не даёт значительного прироста экономического эффекта и существенного повышения КПД.

  • Производительность токарного станка и его техническая характеристика оставались почти неизменными на протяжении многих лет, хотя интенсивно развивались привод, трансмиссия и средства управления, потому что сам резец как рабочий орган оставался прежним, то есть неподвижной моносистемой на макроуровне. С появлением вращающихся чашечных резцов производительность станка резко поднялась. Ещё больше она возросла, когда была задействована микроструктура вещества резца: под действием электрического тока режущая кромка резца стала колебаться до нескольких раз в секунду. Наконец, благодаря газовым и лазерным резцам, полностью изменившим облик станка, достигнута невиданная ранее скорость обработки металла.

Закон перехода «моно - би - поли»

Первый шаг - переход к би системам. Это повышает надежность системы. Кроме того, в бисистеме появляется новое качество, которое не было присуще моно системе.

Переход к поли системам знаменует собой эволюционный этап развития, при котором приобретение новых качеств происходит только за счет количественных показателей. Расширенные организационные возможности расположения однотипных элементов в пространстве и времени позволяют полнее задействовать их возможности и ресурсы окружающей среды.

  • Двухмоторный самолет (бисистема ) надёжней своего одномоторного собрата и обладает большей маневренностью (новое качество).
  • Конструкция комбинированного велосипедного ключа (полисистема ) привела к заметному снижению расхода металла и уменьшению габаритов в сравнении с группой отдельных ключей.
  • Лучший изобретатель - природа - продублировала особо важные части организма человека: у человека два легких, две почки, два глаза и т. д.
  • Многослойная фанера намного прочнее доски тех же размеров.

Но на каком-то этапе развития в полисистеме начинают появляться сбои. Упряжка из более чем двенадцати лошадей становится неуправляемой, самолет с двадцатью моторами требует многогократного увеличения экипажа и трудноуправляем.

Возможности системы исчерпались. Что дальше? А дальше полисистема снова становится моносистемой… Но на качественно новом уровне. При этом новый уровень возникает только при условии повышения динамизации частей системы, в первую очередь рабочего органа.

  • Вспомним тот же велосипедный ключ. Когда динамизировался его рабочий орган, то есть губки стали подвижными, появился разводной ключ. Он стал моносистемой, но в то же время способным работать с многими типоразмерами болтов и гаек.
  • Многочисленные колёса вездеходов превратились в одну подвижную гусеницу.

Закон перехода «моно - би - поли» тесно связан с законом перехода с макро- на микроуровень.

Закон перехода с макро- на микроуровень

Переход с макро- на микроуровень - главная тенденция развития всех современных технических систем.

Для достижения высоких результатов задействуются возможности структуры вещества. Вначале используется кристаллическая решетка, затем ассоциации молекул, единичная молекула, часть молекулы, атом и, наконец, части атома.

  • В погоне за грузоподъёмностью на закате поршневой эры самолёты снабжались шестью, двенадцатью и более моторами. Затем рабочий орган - винт - всё же перешел на микроуровень, став газовой струёй.

Этап развертывания ТС протекает следующим образом.

После появления потребности в новой ТС происходит поиск исходных подсистем, веществ и синтез из них ТС. В этот период идет поиск "классической " схемы ТС в соответствии с законами статики, обеспечивающими поиск состава, энергетическую проводимость ко всем частям системы, согласование ритмики частей системы между собой и соблюдением принципа ВПФ-совместимости.

После формирования моно-ТС происходит интенсивное развитие ТС путем применения ее в различных ТС в качестве подсистемы. Одновременно идет процесс увеличения ГПФ ТС и ее "обрастание" рядом подсистем, повышающих эффективность или обслуживающих ее. На этом этапе уже начинают заметно проявляться тенденции совмещения новой моно-ТС с подсистемами надсистемы и поиска идеальных подсистем, веществ, позволяющих повысить ГПФ системы (см. таблицу применения ТТ в других ТС - рис. 7).

Применение ТС в надсистеме приводит с первых же шагов развития системы к объединению ее с другими системами и дифференциации ее подсистем по выполняемым функциям. Одновременное усложнение и дифференциация ТС и ее подсистем приводит к тому, что каждая ее подсистема на уровне своего ранга становится трудно управляемой - происходит процесс насыщения.

В этот период в недрах подсистем ТС зарождается идеальное вещество , которое после насыщения подсистемы соответствующего ранга поглощает в себя эту подсистему. Так, переходя от ранга к рангу идеальное вещество поглощает и саму ТС.

Этот процесс изображен на рис. 62. Пунктирные линии (на рисунке только для В и ТС) показывают поглощение (свертывание), очистку В от лишних веществ и свойств и поглощение ТС идеальным веществом.

В это время усложнение ТС продолжается, но уже на более высоких рангах или при ее объединении с себе подобными. Как было показано Г.С.Альтшуллером и И.М.Верткиным процесс усложнения ТС происходит путем развертывания ТС из моно-системы в би-, затем в поли- и, наконец в сложные системы.

В каждый период развертывания ТС в би- или поли-систему происходит процесс поглощения (свертывания) ТС в вещество.

Усложнение ТС может быть выражено принципом негэнтропийности , обеспечивающего развитие ТС в направлении идеальности. Суть его заключается в увеличении сложности ТС в процессе развития (увеличении количества возможных вариантов отклика), повышении организации (разделении функций между специализированными связанными между собой открытыми подсистемами и объединении их в универсальную систему) и переходе к самоорганизующимся системам.

Второй этап идеализации ТС - этап поглощения (свертывания) ТС идеальным веществом и есть тот процесс идеализации, который общепринят в ТРИЗ.

Таким образом, представление об усложнении ТС в период ее развертывания, как о составной части процесса идеализации, его диалектики, позволяет получить наиболее полную картину развития ТС и разрешить те противоречия, которые имелись между теорией и реальностью.

2.2. МОДЕЛЬ ТЕХНИЧЕСКОЙ СИСТЕМЫ

Анализ линии жизни реальных ТС показал, что развитие любой системы в итоге заканчивается созданием новой моно-системы , развитие которой повторяется вновь во всех подробностях, но на новом иерархическом уровне. Здесь имеются в виду подробности закономерностей развития. Это дает возможность утверждать, что существует генеральная линия развития любых ТС. В этом аспекте понятие ИТС необходимо для того, чтобы выявить особенности формирования систем, лежащих на этой линии.

Чтобы выявить особенности формирования систем, лежащих на генеральной линии развития, проанализируем модель простейшей ТС (как составной части ТС I, II и III рангов в ее динамическом внутреннем функционировании и взаимодействии с внешней средой. Структура такой ТС была предложена Г.С.Альтшуллером (рис. 63). Она включает в себя минимум составных частей и связей между ними: иерархию внутренних подсистем (ПС, П П С - подсистема n-ного ранга), связи с соседними системами (S(C); (S(ПC)) и с надсистемой (S(C), S(С,НС)) и пограничный слой (ГС) между НС и ТС.

При взаимодействии ТС с внешней средой, т.е. при поступлении извне потоков энергии, веществ и информации - полезных (Э П; В П; И П) и вредных (Э В; В В; И В) - начинается внутреннее функционирование перечисленных выше связей. В результате в надсистему технической системой выдается продукция (Пр), отходы вещества и энергии (Э О; В В;) измерительная информация (И) о состоянии системы.

Учитывая системный характер техники, многоранговость ТС и невозможность отразить предложенной схемой иерархических уровней вещества и поля, нами была предложена схема, изображенная на рис. 64 , которая идентична схеме на рис. 63. Она позволяет отразить как иерархическую зависимость различных рангов ТС, так и некоторые тенденции развития ТС. Каждый из уровней П, В, ПС, ТС и НС представляют собой (в общем виде) область, в которой распределено все многообразие ТС на соответствующих подуровнях. Между уровнями находятся пограничные слои. Потоки энергии, вещества и информации попадая в систему, распределяются между ее подсистемами (уровнями), выдавая на выходе продукцию. При этом, вместе с потоками вредных (Э,В,И), часто генерируемых самой системой, в систему проникают потоки (Э,В,И) из окружающей среды (претензии окружающей среды), ухудшающие и разрушающие ТС. Для уменьшения их влияния в ТС вводится пограничный слой. Но, если и он не "спасает" систему, система адаптируется к воздействующим на нее претензиям, обращая вред в пользу. Таким образом в процессе функционирования ТС должна уметь хорошо перерабатывать полезные потоки (Э,В,И), максимально соблюдая принцип ВПФ-совместимости, и, уметь хорошо сопротивляться претензиям окружающей среды, максимально, где надо, соблюдая или не соблюдая принцип ВПФ-совместимости.

Предложенная схема позволяет также выявить некоторые особенности сосуществования ТС и окружающей среды при их взаимодействии. Одной из таких особенностей являются проявление закона соответствия организаций ТС и окружающей среды .

Сечение 2 - 2

Рис. 64. Схема иерархических уровней ТС (сечение 2-2 - см. )

2.2.1. Закон соответствия организаций ТС и окружающей среды.

Любое взаимодействие, если противодействующие в нем силы равны по величине и противоположны по направлению, является равновесным.

При взаимодействии ТС с окружающей средой (ОС) чаще претензии ОС оказываются сильнее возможностей ТС. Это позволяет сделать вывод о том, что необходимым условием бесконфликтного функционирования ТС в окружающей среде является соответствие ТС окружающей среде по сложности и уровню организации .

Исследования развития различных ТС подтверждают этот вывод и показали, что с увеличением степени идеальности ТС уровень организации ТС становится значительно выше уровня организации ОС. ТС становится более управляемой и меньше начинает зависеть от окружающей среды. Кроме того, при анализе причин и механизмов динамизации ТС выяснилось, что претензии ОС имеют определенную иерархию, которая представляет собой системную организацию природных систем (и природы в целом). Системный характер претензий ОС и в то же время их многообразие вызывает определенное многообразие ТС, функционирующих в окружающей среде, а также многообразие живых организмов.

В самом общем виде иерархия претензий ОС к ТС может быть представлена следующим перечнем.

  1. Макровоздействия (землетрясение, ветер, волны, приливы-отливы, солнечное излучение и т.д.).
  2. Мезовоздействия (средние макровоздействия).
  3. Микровоздействия (вибрация, коррозия, растворение вещества, нагрев), а также претензии действующие на уровне:
    • кристаллической решетки,
    • доменов,
    • молекул,
    • атомов, и т. д.
  4. Микровоздействия на уровне полей (солнечное излучение, тепловое поле, электростатическое, электромагнитное, магнитное и гравитационное поля и др.).

Например, на судно в океане действуют: макроволны - в целом на весь его остов; мезоволны - на его корпус; кавитация, раствор морской воды и т.д. - на материал корпуса; ветер - на надстройки на палубе и т.д. Таким образом сложность организации ОС требует соответствующей сложности организации ТС, чтобы на каждую претензию ОС был соответствующий отклик ТС. Это достигается, например, повышением управляемости ТС.

Создавая ТС для борьбы с претензиями ОС необходимо исходить из уровня организации самой претензии, включая ТС в качестве промежуточного элемента между претензиями ОС и ТС, которую необходимо защитить или ОС и человеком. Изменения, которые происходят после того когда достигается соответствие реакций ТС на претензии ОС, находятся в прямой зависимости от претензий ОС и потребностей человека.

Например, опора для сохранения вечной мерзлоты по пат. США 3788389 выполнена в виде ТТ способной реагировать на все изменения температуры окружающей среды, поддерживая таким образом равновесие между температурой опоры и грунта. Здесь ТТ действует на том уровне, на котором находятся претензии ОС (тепло), но имеет при этом уровень организации выше, чем у ОС, этим и достигается высокая скорость реакции на все изменения ОС.

Другой пример - костюм для горноспасателей по а.с. СССР 111144 (общеизвестное изобретение Г.С.Альтшуллера - см., например, "Алгоритм изобретения", М.: Московский рабочий, 1969 г., с.88, 1973 г., с. 111).

Для обеспечения жизнеспособности ТС должна находиться в неравновесном с ОС состоянии. А это возможно лишь при более высокой организации ТС по сравнению с организацией ОС. Равновесие может наблюдаться в пограничном слое.

То же можно сказать и о случае, когда претензии генерируются самой ТС. Например, в случае неуправляемых процессов или подсистем. Так, жало паяльника по а.с. СССР 616073 выполнено в виде ТТ, стабилизирующей его температуру.

Можно сказать, что в процессе своего развития ТС стремится перейти на тот уровень, на котором наблюдается или может быть соответствие организаций ТС и ОС. Причем процесс этот направленный, ТС все время стремится, как бы, уйти от претензий более высоких уровней, к претензиям более низких уровней.

Особенно ярко этот процесс проявляется при переходе с макро- на микро-уровень. Например, струны ограничительного элемента, при электрохимической обработке стекла, натягивались с помощью специального механического устройства. Тем не менее претензии ОС - тепловое поле, нагревающее и деформирующее струны (чем и вызвана необходимость подтягивать их), действовали непосредственно на кристаллическую решетку струн. В соответствии с вышеизложенным, ТС также должна перейти на тот уровень, где непосредственно действуют претензии. Что и было предложено по а.с. СССР 580116: ограничительный элемент выполнили в виде биметаллической дуги. Теперь устройство само приспосабливается к изменениям теплового поля.

Уход от претензий высших уровней к претензиям низших уровней заметен во всех областях, где ТС испытывает претензии разных уровней. Например, в строительстве: это переход от зданий опирающихся на несколько точек, к зданиям, опирающимся на одну, например к фундаментам с корневой системой, особенно в районах с повышенной сейсмичностью.

Итак, сохранение неравновесного состояния взаимодействия с внешней средой является важным принципом, обеспечивающим жизнеспособность ТС. Он состоит в противоборстве факторов, направленных на поддержание неравновесия со средой, и уравновешивающих факторов среды, направленных на приведение ТС в состояние равновесия. ТС достигает состояния неравновесия путем оптимального перераспределения Э, В и И между подсистемами (если для этого хватает внутренних ресурсов - селективных подсистем, связей между ними, запасов "прочности") или изменяется, заменяется новой ТС (если внутренних ресурсов недостаточно и нечем ответить на "претензии" внешней среды, то возникают и быстро развиваются противоречия).

Один из путей опережающего (прогностического) развития ТС - искусственное ужесточение изменений внешней среды для создания сильных противоречий.

Во всех случаях уровень организации ТС должен быть несколько выше уровня организации ОС. Например, необходимо поддерживать разницу температур между наружной оболочкой космического корабля и внутренней. Достигается это путем создания пограничного слоя , обеспечивающего сохранение разности изменения в организации внутренней среды ТС и внешней - космоса.

На первых этапах развития ТС образуется первичный пограничный слой. Затем идет процесс упрочнения и усложнения, динамизации и дифференциации его на подслои со специализацией их по потокам Э,В,И. И, в конечном итоге, поглощение всех буферных систем, обслуживающих пограничный слой, идеальным веществом этого слоя.

Усложнение ТС в период развертывания протекает одновременно с процессами объединения и специализации подсистем, что требует повышения управляемости усложнившейся системы. Назревшие противоречия между управляемостью и сложностью системы разрешаются двумя путями:

  • передачей функций управления в надсистему путем усложнения надсистемы и упрощения системы (ее оперативной зовы),
  • передачей управления идеальному веществу системы путем упрощения самой системы, но усложнением вещества.

Примеры тому ТТ-120, ТТ-121 и ТТ-92.

Непременным условием развития ТС в направлении увеличения степени идеальности, является принцип наименьшего действия. Суть его заключается в том, чтобы в процессе развития ТС осуществить такие минимальные преобразования в ТС, после которых в ней происходили бы сами по себе изменения, направленные на увеличение главной полезной функции системы.

Проявление этого принципа становится ощутимым в тех случаях, когда в системе соблюдены принципы ВПФ-совместимости, соответствия организаций ТС и ОС, а сама ТС находится на этапе поглощения в идеальное вещество. Например, ТТ-92, ТТ-108, а.с. СССР 383973, а.с. СССР 1070421 и др.

Приведенные принципы являются попыткой исследовать "тонкую структуру" и механизмы развития и функционирования технических систем.

2.3. СХЕМА ЭВОЛЮЦИИ ТЕХНИЧЕСКИХ СИСТЕМ.

При построении любой научной теории одним из важных вопросов является философская позиция исследователя, его методология. Это особенно важно сейчас, когда закладываются основы ТРТС, корни которой уходят в ТРИЗ.

ТРИЗ построена на большом фактическом материале. Но тот эмпирический подход, заключающийся в разделении, расчленении объекта, фиксирование в сознании устойчивого объекта, с уже сложившейся структурой, становится не приемлемым, особенно когда исследуется вопрос об эволюции системы.

Поскольку такой эмпирический подход отвлекается от развития предмета, его соотношения с системой, взаимодействия с другими предметами, то в результате оказывается, что исследуемый предмет как целое отражается односторонне. Поэтому нами выбран путь анализа не отдельных, вычлененных из общего развития ТС, а путь логики развития целого вида ТС, увязки всех законов и движущих сил развития в единое целое.

К проблеме идеализации ТС было сделано несколько подходов:

  • исследована динамизация ТС,
  • исследована идеализация вещества ТС,
  • проанализированы принципы развития и модель ТС, виды идеализации, логика развития конкретной ТС.

Полученные схемы, каждая по своему, отражала процесс идеализации. Однако при попытке объединить их, для объяснения эволюции ТС возникали противоречия. Попытка привлечь схему диалектики развития ТС, предложенную Г.С.Альтшуллером и И.М.Верткиным (см. ), для устранения возникшего противоречия, еще сильнее обострила противоречия между отдельными схемами, хотя было ясно, что каждая из них отражает какую-то сторону развития. Например, схема диалектики развития ТС отражала усложнение ТС в процессе перехода от моно к би-, затем к поли- и сложным системам. При этом отмечалось, что развитие ТС происходит по пути разрешения противоречия между усложнением ТС и ее идеализацией - операцией свертывания системы. Причем полностью свернутая би- или поли-системы снова становится моно-системой и может вновь совершить виток от "А" к "Д" или "Е" (т.е., к моно-С или би-С следующего цикла). Это один из важнейших механизмов развития всех ТС, отражающий одновременно закон перехода в надсистему.

Когда же был применен системный подход к решению возникших противоречий, все схемы удалось вписать в единую схему (модель) эволюции ТС, которая была впоследствии названа "бегущей волной идеализации ".

С учетом исходных принципов и схем, схема диалектики развития ТС (), уточненная на Новосибирской конференции, была деформирована (см. ) так, чтобы все полностью свернутые ТС легли на генеральную линию развития (ГГЛ) ТС. Таким образом, точки, которые легли на ГГЛ, отразили то представление об идеальности ТС, которое принято в ТРИЗ (М,Г,Э->0, п->). Стало ясно, что без анализа части жизни ТС лежащей выше ГГЛ невозможно будет выяснить ни структуру законов, ни их механизмы, ни объяснить все существующее многообразие систем данного вида.



Рассказать друзьям