Энергетический слой. Химия

💖 Нравится? Поделись с друзьями ссылкой

2. Строение ядер и электронных оболочек атомов

2.6. Энергетические уровни и подуровни

Наиболее важной характеристикой состояния электрона в атоме является энергия электрона, которая согласно законам квантовой механики изменяется не непрерывно, а скачкообразно, т.е. может принимать только вполне определенные значения. Таким образом, можно говорить о наличии в атоме набора энергетических уровней.

Энергетический уровень - совокупность АО с близкими значениями энергии.

Энергетические уровни нумеруют с помощью главного квантового числа n , которое может принимать только целочисленные положительные значения (n = 1, 2, 3, ...). Чем больше значение n , тем выше энергия электрона и данного энергетического уровня. Каждый атом содержит бесконечное число энергетических уровней, часть из которых в основном состоянии атома заселена электронами, а часть - нет (эти энергетические уровни заселяются в возбужденном состоянии атома).

Электронный слой - совокупность электронов, находящихся на данном энергетическом уровне.

Иными словами, электронный слой - это энергетический уровень, содержащий электроны.

Совокупность электронных слоев образует электронную оболочку атома.

В пределах одного и того же электронного слоя электроны могут несколько различаться по энергии, в связи с чем говорят, что энергетические уровни расщепляются на энергетические подуровни (подслои ). Число подуровней, на которые расщепляется данный энергетический уровень, равно номеру главного квантового числа энергетического уровня:

N (подур) = n (уровн) . (2.4)

Подуровни изображаются с помощью цифр и букв: цифра отвечает номеру энергетического уровня (электронного слоя), буква - природе АО, формирующей подуровни (s -, p -, d -, f -), например: 2p -подуровень (2p -АО, 2p -электрон).

Таким образом, первый энергетический уровень (рис. 2.5) состоит из одного подуровня (1s ), второй - из двух (2s и 2p ), третий - из трех (3s , 3p и 3d ), четвертый из четырех (4s , 4p , 4d и 4f ) и т.д. Каждый подуровень содержит определенное число АО:

N (AO) = n 2 . (2.5)

Рис. 2.5. Схема энергетических уровней и подуровней для первых трех электронных слоев

1. АО s -типа имеются на всех энергетических уровнях, p -типа появляются начиная со второго энергетического уровня, d -типа - с третьего, f -типа - с четвертого и т.д.

2. На данном энергетическом уровне может быть одна s -, три p -, пять d -, семь f -орбиталей.

3. Чем больше главное квантовое число, тем больше размеры АО.

Поскольку на одной АО не может находиться более двух электронов, общее (максимальное) число электронов на данном энергетическом уровне в 2 раза больше числа АО и равно:

N (e) = 2n 2 . (2.6)

Таким образом, на данном энергетическом уровне максимально может быть 2 электрона s -типа, 6 электронов р -типа и 10 электронов d -типа. Всего же на первом энергетическом уровне максимальное число электронов равно 2, на втором - 8 (2 s -типа и 6 р -типа), на третьем - 18 (2 s -типа, 6 р -типа и 10 d -типа). Эти выводы удобно обобщить в табл. 2.2.

Таблица 2.2

Связь между главным квантовым числом, числом э

При изучении мы узнали, чему равно максимальное число электронов на каждой орбитали, на различных энергетических уровнях и подуровнях.

Что еще нужно знать для установления строения электронной оболочки атома любого элемента? Для этого нужно знать порядок заполнения орбиталей электронами.

Порядок заполнения электронами атомных орбиталей определяет принцип наименьшей энергии (принцип минимума энергии):

Основное (устойчивое) состояние атома - это такое состояние, которое характеризуется минимальной энергией. Поэтому электроны заполняют орбитали в порядке увеличения их энергии.

Орбитали одного подуровня имеют одинаковую энергию.

Например, три орбитали данного р-подуровня имеют одинаковую энергию.

Поэтому принцип наименьшей энергии определяет порядок заполнения энергетических подуровней: электроны заполняют энергетические подуровни в порядке увеличения их энергии.

Как показывает рисунок ниже, наименьшую энергию имеет 15-подуровень, который первым заполняется электронами.

Затем последовательно заполняется электронами следующие подуровни: 2s, 2р, 3s, 3р. После 3р-подуровня электроны заполняют 4, подуровень, так как он имеет меньшую энергию, чем 3d-подуровень.

Это объясняется тем, что энергия подуровня определяется суммой главного и побочного квантовых чисел, т. е. суммой (n + l ). Чем меньше эта сумма, тем меньше энергия подуровня. Если суммы n + l одинаковы для разных подуровней, то их энергия тем меньше, чем меньше главное квантовое число n. Изложенные правила были сформулированы в 1951 г. советским ученым В. М. Клечковским (правила Клечковского ).

На подуровнях, которые показаны на рисунке, может разместиться 112 электронов. В атомах известных элементов находится от 1 до 110 электронов. Поэтому другие подуровни в основных состояниях атомов не заполняются электронами.

Наконец, осталось выяснить вопрос, в каком порядке электроны заполняют орбитам одного подуровня. Для этого нужно познакомиться с правилом Гунда :

На одном подуровне электроны располагаются так, чтобы абсолютное значение суммы спиновых квантовых чисел (суммарного спина) было максимальным. Это соответствует устойчивому состоянию атома.

Рассмотрим, например, какое расположение трех электронов на р-подуровне соответствует устойчивому состоянию атома:

Рассчитаем абсолютное значение суммарного спина для каждого состояния:

Строение электронных оболочек (электронные конфигурации) атомов элементов I IV периодов

Чтобы правильно изобразить электронные конфигурации различных атомов, нужно знать:

1) число электронов в атоме (равно порядковому номеру элемента);

2) максимальное число электронов на уровнях, подуровнях;

3) порядок заполнения подуровней и орбиталей.

Элементы I периода:

В таблицах представлены схемы электронного строения, электронные и электронно-графические формулы атомов элементов II, III и IV периодов.

Элементы II периода:

Элементы III периода:

Элементы IV периода:

(1887-1961) для описания состояния электрона в атоме водорода. Он объединил математические выражения для колебательных процессов и уравнение де Бройля и получил следующее линейное дифференциальное однородное уравнение:

где ψ - волновая функция (аналог амплитуды для волнового движения в классической механике), которая характеризует движение электрона в пространстве как волнообразное возмущение; x , y , z - координаты, m - масса покоя электрона, h - постоянная Планка, E - полная энергия электрона, E p - потенциальная энергия электрона.

Решениями уравнения Шрёдингера являются волновые функции. Для одноэлектронной системы (атома водорода) выражение для потенциальной энергии электрона имеет простой вид:

E p = −e 2 / r ,

где e - заряд электрона, r - расстояние от электрона до ядра. В этом случае уравнение Шрёдингера имеет точное решение.


Чтобы решить волновое уравнение, надо разделить его переменные. Для этого заменяют декартовы координаты x , y , z на сферические r , θ, φ. Тогда волновую функцию можно представить в виде произведения трех функций, каждая из которых содержит только одну переменную:

ψ(x ,y ,z ) = R (r ) Θ(θ) Φ(φ)

Функцию R (r ) называют радиальной составляющей волновой функции, а Θ(θ) Φ(φ) - ее угловыми составляющими.

В ходе решения волнового уравнения вводятся целые числа - так называемые квантовые числа (главное n , орбитальное l и магнитное m l ). Функция R (r ) зависит от n и l , функция Θ(θ) - от l и m l , функция Φ(φ) - от m l .

Геометрическим образом одноэлектронной волновой функции является атомная орбиталь . Она представляет собой область пространства вокруг ядра атома, в которой высока вероятность обнаружения электрона (обычно выбирают значение вероятности 90-95%). Это слово происходит от латинского "орбита " (путь, колея), но имеет другой смысл, не совпадающий с понятием траектории (пути) электрона вокруг атома, предложенным Н. Бором для планетарной модели атома. Контуры атомной орбитали - это графическое отображение волновой функции, полученной при решении волнового уравнения для одного электрона.

Квантовые числа

Квантовые числа, возникающие при решении волнового уравнения, служат для описания состояний квантово-химической системы. Каждая атомная орбиталь характеризуется набором из трех квантовых чисел: главного n , орбитального l и магнитного m l .

Главное квантовое число n характеризует энергию атомной орбитали. Оно может принимать любые положительные целочисленные значения. Чем больше значение n , тем выше энергия и больше размер орбитали. Решение уравнения Шрёдингера для атома водорода дает следующее выражение для энергии электрона:

E = −2π 2 me 4 / n 2 h 2 = −1312,1 / n 2 (кДж/моль)

Таким образом, каждому значению главного квантового числа отвечает определенное значение энергии электрона. Уровни энергии с определенными значениями n иногда обозначают буквами K , L , M , N ... (для n = 1, 2, 3, 4...).

Орбитальное квантовое число l характеризует энергетический подуровень. Атомные орбитали с разными орбитальными квантовыми числами различаются энергией и формой. Для каждого n разрешены целочисленные значения l от 0 до (n −1). Значения l = 0, 1, 2, 3... соответствуют энергетическим подуровням s , p , d , f .


Форма s -орбиталей сферическая, p -орбитали напоминают гантели, d - и f -орбитали имеют более сложную форму.

Магнитное квантовое число m l отвечает за ориентацию атомных орбиталей в пространстве. Для каждого значения l магнитное квантовое число m l может принимать целочисленные значения от −l до +l (всего 2l + 1 значений). Например, р -орбитали (l = 1) могут быть ориентированы тремя способами (m l = -1, 0, +1).

Электрон, занимающий определенную орбиталь, характеризуется тремя квантовыми числами, описывающими эту орбиталь и четвертым квантовым числом (спиновым ) m s , которое характеризует спин электрона - одно из свойств (наряду с массой и зарядом) этой элементарной частицы. Спин - собственный магнитный момент количества движения элементарной частицы. Хотя это слово по-английски означает "вращение ", спин не связан с каким-либо перемещением частицы, а имеет квантовую природу. Спин электрона характеризуется спиновым квантовым числом m s , которое может быть равно +1/2 и −1/2.

Квантовые числа для электрона в атоме:

Энергетические уровни и подуровн и

Совокупность состояний электрона в атоме с одним и тем же значением n называют энергетическим уровнем . Число уровней, на которых находятся электроны в основном состоянии атома, совпадает с номером периода, в котором располагается элемент. Номера этих уровней обозначают цифрами: 1, 2, 3,... (реже - буквами K , L , M , ...).

Энергетический подуровень - совокупность энергетических состояний электрона в атоме, характеризующихся одними и теми же значениями квантовых чисел n и l . Подуровни обозначают буквами: s , p , d , f ... Первый энергетический уровень имеет один подуровень, второй - два подуровня, третий - три подуровня и так далее.

Если на схеме орбитали обозначить в виде ячеек (квадратных рамок), а электроны - в виде стрелок ( или ↓), то можно увидеть, что главное квантовые число характеризуют энергетический уровень (ЭУ), совокупность главного и орбитального квантовых чисел - энергетический подуровень (ЭПУ), совокупность главного, орбитального и магнитного квантовых чисел - атомную орбиталь , а все четыре квантовые числа - электрон.


Каждой орбитали отвечает определенная энергия. Обозначение орбитали включает номер энергетического уровня и букву, отвечающую соответствующему подуровню: 1s , 3p , 4d и т.п. Для каждого энергетического уровня, начиная со второго, возможно существование трех равных по энергии p -орбиталей, расположенных в трех взаимно перпендикулярных направлениях. На каждом энергетическом уровне, начиная с третьего, имеется пять d -орбиталей, имеющих более сложную четырехлепестковую форму. Начиная с четвертого энергетического уровня, появляются еще более сложные по форме f -орбитали; на каждом уровне их семь. Атомную орбиталь с распределенным по ней зарядом электрона нередко называют электронным облаком.

Электронная плотность

Пространственное распределение заряда электрона называется электронной плотностью. Исходя из того, что вероятность нахождения электрона в элементарном объеме dV равна |ψ| 2 dV , можно рассчитать функцию радиального распределения электронной плотности.

Если за элементарный объем принять объем шарового слоя толщиной dr на расстоянии r от ядра атома, то

dV = 4πr 2 dr ,

а функция радиального распределения вероятности нахождения электрона в атоме (вероятности электронной плотности), равна

W r = 4πr 2 |ψ| 2 dr

Она представляет собой вероятность обнаружения электрона в сферическом слое толщиной dr на определенном расстоянии слоя от ядра атома.


Для 1s -орбитали вероятность обнаружения электрона максимальна в слое, находящемся на расстоянии 52,9 нм от ядра. По мере удаления от ядра атома вероятность обнаружения электрона приближается к нулю. В случае 2s -орбитали на кривой появляются два максимума и узловая точка, где вероятность обнаружения электрона равна нулю. В общем случае для орбитали, характеризующейся квантовыми числами n и l , число узлов на графике функции радиального распределения вероятности равно (n l − 1).

Строение веществ было интересно людям с той поры, как возникла возможность не беспокоиться о пропитании и изучать окружающий мир. Такие явления, как засухи, наводнения, молнии, ужасали человечество. Незнание их объяснений порождало веру в различных злых богов, требующих жертв. Именно поэтому люди начали изучать природные явления, стремясь к их предсказанию, и углубляться в строение веществ. Они изучили и ввели следующие два важных понятия в химии: энергетический уровень и подуровень.

Предпосылки к открытию мельчайших химических веществ

О маленьких частицах, из которых состоят вещества, догадались еще древние греки. Они сделали странное открытие: мраморные ступени, по которым за несколько десятилетий прошло множество людей, изменили свою форму! Это привело к выводу о том, что ступня прошедшего забирает какую-то частичку камня с собой. Данное явление далеко от понимания существования энергетического уровня в химии, но именно с него все началось. Наука начала прогрессивно развиваться и углубляться в строение химических элементов и их соединений.

Начало изучения строения атома

В начале XX века посредством опытов с электричеством был открыт атом. Он считался электронейтральным, но имел положительные и отрицательные составные частицы. Ученые хотели выяснить их распределение внутри атома. Было предложено несколько моделей, одна из которых даже имела название «булочка с изюмом». Британский физик Эрнест Резерфорд провел опыт, который показал, что в центре атома расположено положительное ядро, а отрицательный заряд находится в маленьких электронах, вращающихся вокруг него.

Открытие энергетического уровня в химии стало большим прорывом в изучении строения веществ и явлений.

Энергетический уровень

В ходе изучения свойств химических веществ выяснилось, что каждый элемент имеет свои уровни. Например, у кислорода схема строения одна, а у азота совсем другая, хотя номера их атомов различны лишь на единицу. Так что такое энергетический уровень? Это электронные слои, состоящие из электронов, которые образуются по причине различной силы их притяжения к ядру атома. Одни находятся ближе, а другие - дальше. То есть верхние электроны «давят» на нижние.

Число энергетических уровней в химии равняется номеру периода в Периодической таблице Д. И. Менделеева. Наибольшее количество электронов, которые находятся на данном энергетическом уровне, определяется по следующей формуле: 2n 2 , где n - это номер уровня. Таким образом, на первом энергетическом уровне может быть расположено не более двух электронов, на втором - не более восьми, на третьем - восемнадцати и так далее.

У каждого атома есть уровень, находящийся от его ядра дальше других. Он является крайним, или последним, и называется внешним энергетическим уровнем. на нем для элементов главных подгрупп равняется номеру группы.

Для построения схемы атома и его энергетических уровней в химии нужно следовать такому плану:

  • определите число всех электронов атома данного элемента, которое равно его порядковому номеру;
  • определите число энергетических уровней по номеру периода;
  • определите число электронов на каждом энергетическом уровне.

Примеры схем строения энергетических уровней некоторых элементов смотрите ниже.

Энергетические подуровни

В атомах, помимо энергетических уровней, существуют еще и подуровни. На каждом уровне, в зависимости от числа электронов на нем, заполняются определенные подуровни. От того, как подуровень заполняется, различают четыре типа элементов:

  • S-элементы. Происходит заполнение s-подуровней, на которых могут находиться не более двух электронов. К ним относятся первые два элемента от каждого периода;
  • P-элементы. В данных элементах может быть не более шести электронов, расположенных на p-подуровне;
  • D-элементы. К ним относятся элементы больших периодов (декад), находящиеся между s- и p-элементами;
  • F-элементы. Заполнение f-подуровня происходит у актиноидов и лантоноидов, находящихся в шестом и седьмом периодах.

Опыты по рассеянию - частиц обнаружили существование в атомах тяжелого положительного ядра и электронной оболочки. Дальнейшие сведения о свойствах атомов дало изучение таких атомных процессов, которые сопровождаются изменением внутренней энергии атома. Сюда относятся столкновения атомов с электронами, испускание и поглощение света атомами и др. Исследуя эти процессы, удалось установить своеобразные и очень важные закономерности, которым подчиняется внутренняя энергия атомов.

Столкновения электронов с атомами. Наиболее простые условия для изучения передачи энергии от электронов к атомам могут быть осуществлены в устройстве, изображенном на рис. 359. Из трубки 1 выкачан воздух, и в нее введено небольшое количество одноатомных паров какого-нибудь вещества, например ртути. Электроны, испускаемые накаленным катодом 2, ускоряются разностью потенциалов действующей между катодом 2 и металлической сеткой 4. Благодаря очень малой концентрации атомов электроны пролетают короткий путь между катодом и первой сеткой без столкновений и приобретают энергию .

Рис. 359. Устройство для измерения потери энергии электроном при движении в парах ртути: 1 – стеклянная трубка заполненная парами ртути (давление тысячи доли ), 2 – накаленный катод (нагреватель на чертеже не указан); 3 – анод, 4 и 5 – редкие металлические сетки, соединенные между собой, и ускоряющая и тормозящая разность потенциалов

За первой сеткой 4 на пути между нею и второй сеткой 5 электрическое поле равно нулю, так как сетки находятся при одинаковом потенциале, и энергия электрона может измениться только за счет соударения с атомом. Путь между сетками выбирается достаточно длинным, так что каждый электрон испытывает хотя бы одно соударение. Далее, на пути между второй сеткой и анодом действует разность потенциалов , тормозящая электроны; ввиду этого до анода могут дойти только те электроны, энергия которых больше .

Постепенно увеличивая , определим запирающую разность потенциалов, т. е. то наименьшее значение , при котором электроны не доходят до анода и ток через гальванометр прекращается. Измерив запирающую разность потенциалов, можно установить, теряют ли электроны энергию при столкновениях с атомами. В самом деле, если на пути между сетками электроны не теряют энергии, то запирающая разность потенциалов будет равна ускоряющей; в противном случае она будет меньше. При этом, если каждый электрон отдает энергию , то превышение ускоряющего напряжения над тормозящим составит .

Опыты такого рода, проведенные с парами ртути, дали замечательный результат. Оказалось, что передача энергии от электронов к атомам существенно зависит от энергии электрона. Пока энергия электронов меньше, чем (т. е. ), электроны вовсе не теряют энергии при соударениях с атомами (т. е. ). Но когда энергия электронов достигает (или немного превышает) (), потеря энергии при соударениях сразу становится большой (т. е. ). При этом при столкновении электрон отдает, а значит, атом ртути воспринимает всегда о дну и ту же порцию энергии, равную . Очевидно, эта величина характеризует свойство атома ртути: энергия его может меняться только на конечную величину, равную . Меньшую энергию атом ртути не воспринимает.

При изучении механики, теплоты, электричества мы не встречались с подобным явлением: энергия любого тела или системы тел в принципе могла изменяться непрерывно, т. е. сколь угодно малыми порциями. В случае же атома ртути непрерывное изменение энергии невозможно - энергия ртутного атома меняется только прерывно, т. е. на конечную величину.

Делая соответствующие опыты с другими веществами, мы приходим к тому же заключению о прерывности {дискретности) энергетических состояний атомов.

Исследование оптических спектров. Как известно (§ 173), элементы в газообразном состоянии обладают линейчатыми спектрами испускания и поглощения света. Каждому элементу свойственны определенные спектральные линии, отличные от линий других элементов. Так как атомы газа находятся в среднем на больших расстояниях и не влияют друг на друга, частоты линейчатого спектра элемента должны определяться свойствами отдельного атома этого элемента.

В гл. XXI мы выяснили, что световая энергия существует в виде мельчайших неделимых порций - квантов; атомы должны, следовательно, изучать и поглощать свет такими же порциями, квантами. Энергия кванта пропорциональна частоте света , т. е. равна , где - постоянная Планка. Энергия испущенного атомом кванта по закону сохранения энергии равна разности энергий атома до после излучения, т. е.

где - энергия начального состояния атома (до излучения); - энергия конечного состояния атома (после излучения).

Соотношение (204.1) связывает изменение энергии атома при испускании или поглощении света с частотой последнего . Если бы энергия атома могла испытывать всевозможные изменения, то в атомном спектре присутствовали бы всевозможные частоты и он был бы сплошным подобно спектру раскаленного твердого тела. В действительности же атомный спектр (т. е. спектр испускания или поглощения одноатомного газа) не сплошной, а линейчатый. Он содержит только некоторые определенные характерные для данного атома частоты. Следовательно, энергия атома не может испытывать всевозможные, любые изменения. Энергия атома может изменяться только на некоторые определенные значения. Зная спектр вещества, нетрудно найти эти значения с помощью соотношения (204.1).

Так, например, спектр поглощения ртутного пара содержит следующие линии (в порядке убывания длин волн); и т. д. Подставляя в (204.1), находим для первой линии

Для второй и третьей линий получаем соответственно и . Атом ртути может, таким образом, воспринимать энергию только в виде порций, равных и т. д. Наименьшая воспринимаемая порция оказывается равной в согласии с результатом, полученным из опытов по соударениям электронов с атомами.

Итак, оба рассмотренных нами класса явлений - оптические спектры и взаимодействие атомов с электронами - указывают на прерывный (дискретный) характер внутренней энергии атомов. Энергия атома не может изменяться непрерывно. Она изменяется скачками на определенные, конечные порции, различные для разных атомов. Отсюда следует, что энергия атома не может быть любой, а может принимать только некоторые избранные значения, характерные для каждого атома. Возможные значения внутренней энергии атома получили название энергетических или квантовых уровней.

Схема энергетических уровней атома водорода, построенная на основании спектральных данных, изображена на рис. 360 в виде ряда параллельных линий. Расстояние между двумя линиями равно разности энергий двух состояний водородного атома и, следовательно, пропорционально частоте кванта, излучаемого при переходе из одного состояния в другое (более низкое). Поэтому расстояния между уровнями выражают в некотором масштабе частоты спектральных линий водорода.

на уровень и т. д. (см. также § 175)

Атом, находящийся в одном из высших энергетических состояний (обозначенных номером на рис. 360), через небольшой промежуток времени (около ) перейдет в более бедное энергией состояние, испуская соответствующий квант. Из низшего энергетического состояния атом не может самопроизвольно (без сообщения энергии извне) перейти в другое состояние. Следовательно, низшее состояние является устойчивым). При нормальных условиях все атомы находятся в низшем энергетическом состоянии, и газ не светится.

Сообщая атому энергию, мы можем возбудить его, т. е. перевести из нормального (низшего) состояния в одно из высших энергетических состоянии. В случае водорода расстояние от низшего энергетического уровня до ближайшего высшего уровня составляет . Это наименьшая порция энергии и, которую находящийся в низшем состоянии водородный атом может поглотить. Меньшей энергии атом водорода не может воспринять, ибо у него не существует состояний, энергия которых отличается от энергии нормального состояния меньше чем на . Для атома ртути аналогичная величина равна, как мы видели, .



Рассказать друзьям