Основной источник энергии на нашей планете. Солнце — источник энергии

💖 Нравится? Поделись с друзьями ссылкой

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Энергия ветра

2. Гидроэнергия

3. Геотермальная энергия

4. Энергия мирового океана

5. Энергия приливов и отливов

6. Солнечная энергия

Заключение

Библиографический список

Введение

Понятие энергии - не только физическое или естественнонаучного, а также и техническое. Цель данной работы - прежде всего ознакомиться с современным положением дел в этой необычайно широкой проблематике, анализ новых путей получения практически полезных форм энергии. Человечеству нужна энергия, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы традиционных природных топлив (нефти, угля, газа и др.) конечны. Конечны также и запасы ядерного топлива - урана и тория. Практически неисчерпаемы запасы термоядерного топлива - водорода, однако управляемые термоядерные реакции пока не освоены и неизвестно, когда они будут использованы для промышленного получения энергии в чистом виде, т.е. без участия в этом процессе реакторов деления. Остаются два пути: строгая экономия при расходовании энергоресурсов и использование нетрадиционных возобновляемых источников энергии.

При рассмотрении энергетики, как отрасли народного хозяйства, можно отследить эволюцию источников энергии, а также проблемы освоения и использования новых ресурсов энергии (альтернативные источники энергии). энергия нетрадиционный геотермальный

К возобновляемым источникам энергии относятся: солнечная и геотермальная энергия, приливная, атомная, энергия ветра и энергия волн. В отличие от ископаемых топлив эти формы энергии не ограничены геологически накопленными запасами (если атомную энергию рассматривать вместе стермоядерной). Это означает, что их использование и потребление не ведет к неизбежному исчерпанию запасов.

Все новые схемы преобразования энергии можно объединить единым термином “ экоэнергетика ”, под которым подразумеваются любые методы получения чистой энергии, не вызывающие загрязнения окружающей среды.

1. Энергия ветра

Мы живем на дне воздушного океана, в мире ветров. Люди давно это поняли, они постоянно ощущали на себе воздействие ветра, хотя долгое время не могли объяснить многие явления. Наблюдением за ветрами занимались еще в Древней Греции. Уже в III в. до н. э. было известно, что ветер приносит ту или иную погоду. Правда, греки определяли только направление ветра. В Афинах около 100 г. до н. э. построили так называемую Башню ветров с укрепленной на ней “розой ветров” (башня существует по сей день, нет только “розы”). В Японии и Китае также были известны розы ветров: изготовленные в виде драконов, они указывали направление ветра. Но главное назначение их было иное: отпугивать злых духов - чужие ветры.

Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры - от легкого ветерка, несущего желанную прохладу в летний зной, до могучих ураганов, приносящих неисчислимый урон и разрушения. Всегда неспокоен воздушный океан, на дне которого мы живем. Ветры, дующие на просторах нашей страны, могли бы легко удовлетворить все ее потребности в электроэнергии! Климатические условия позволяют развивать ветроэнергетику на огромной территории - от наших западных границ до берегов Енисея. Богаты энергией ветра северные районы страны вдоль побережья Северного Ледовитого океана, где она особенно необходима мужественным людям, обживающим эти богатейшие края. Почему же столь обильный, доступный да и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывают всего одну тысячную мировых потребностей в энергии.

По оценкам различных авторов, общий ветроэнергетический потенциал Земли равен 1200 ТВт, однако возможности использования этого вида энергии в различных районах Земли неодинаковы. Среднегодовая скорость ветра на высоте 20-30 м над поверхностью Земли должна быть достаточно большой, чтобы мощность воздушного потока, проходящего через надлежащим образом ориентированное вертикальное сечение, достигала значения, приемлемого для преобразования. Ветроэнергетическая установка, расположенная на площадке, где среднегодовая удельная мощность воздушного потока составляет около 500 Вт/м 2 (скорость воздушного потока при этом равна 7 м/с), может преобразовать в электроэнергию около 175 из этих 500 Вт/м2.

Энергия, содержащаяся в потоке движущегося воздуха, пропорциональна кубу скорости ветра. Однако не вся энергия воздушного потока может быть использована даже с помощью идеального устройства.Теоретически коэффициент полезного использования (КПИ) энергии воздушного потока может быть равен 59,3 %. На практике, согласно опубликованным данным, максимальный КПИ энергии ветра в реальном ветроагрегате равен приблизительно 50 %, однако и этот показатель достигается не при всех скоростях, а только при оптимальной скорости, предусмотренной проектом. Кроме того, часть энергии воздушного потока теряется при преобразовании механической энергии в электрическую, которое осуществляется с КПД обычно 75-95 %. Учитывая все эти факторы, удельная электрическая мощность, выдаваемая реальным ветроэнергетическим агрегатом, видимо, составляет 30-40 % мощности воздушного потока при условии, что этот агрегат работает устойчиво в диапазоне скоростей, предусмотренных проектом. Однако иногда ветер имеет скорость, выходящую за пределы расчетных скоростей. Скорость ветра бывает настолько низкой, что ветроагрегат совсем не может работать, или настолько высокой, что ветроагрегат необходимо остановить и принять меры по его защите от разрушения. Если скорость ветра превышает номинальную рабочую скорость, часть извлекаемой механической энергии ветра не используется, с тем чтобы не превышать номинальной электрической мощности генератора. Учитывая эти факторы, удельная выработка электрической энергии в течение года, видимо, составляет 15-30% энергии ветра, или даже меньше, в зависимости от местоположения и параметров ветроагрегата.

Новейшие исследования направлены преимущественно на получение электрической энергии из энергии ветра. Стремление освоить производство ветроэнергетических машин привело к появлению на свет множества таких агрегатов. Некоторые из них достигают десятков метров в высоту, и, как полагают, со временем они могли бы образовать настоящую электрическую сеть. Малые ветроэлектрические агрегаты предназначены для снабжения электроэнергией отдельных домов.

Сооружаются ветроэлектрические станции преимущественно постоянного тока. Ветряное колесо приводит в движение динамо-машину - генератор электрического тока, который одновременно заряжает параллельно соединенные аккумуляторы. Аккумуляторная батарея автоматически подключается к генератору в тот момент, когда напряжение на его выходных клеммах становится больше, чем на клеммах батареи, и также автоматически отключается при противоположном соотношении.

В небольших масштабах ветроэлектрические станции нашли применение несколько десятилетий назад. Самая крупная из них мощностью 1250 кВт давала ток в сеть электроснабжения американского штата Вермонт непрерывно с 1941 по 1945 г. Однако после поломки ротора опыт прервался - ротор не стали ремонтировать, поскольку энергия от соседней тепловой электростанции обходилась дешевле. По экономическим причинам прекратилась эксплуатация ветроэлектрических станций и в европейских странах.

Сегодня ветроэлектрические агрегаты надежно снабжают током нефтяников; они успешно работают в труднодоступных районах, на дальних островах, в Арктике, на тысячах сельскохозяйственных ферм, где нет поблизости крупных населенных пунктов и электростанций общего пользования. Американец Генри Клюз в штате Мэн построил две мачты и укрепил на них ветродвигатели с генераторами. 20 аккумулятором по 6 В и 60 по 2 В служат ему в безветренную погоду, а в качестве резерва он имеет бензиновый движок. За месяц Клюз получает от своих ветроэлектрических агрегатов 250 кВт· ч энергии; этого ему хватает для освещения всего хозяйства, питания бытовой аппаратуры (телевизора, проигрывателя, пылесоса, электрической пишущей машинки), а также для водяного насоса и хорошо оборудованной мастерской.

Широкому применению ветроэлектрических агрегатов в обычных условиях пока препятствует их высокая себестоимость. Вряд ли требуется говорить, что за ветер платить не нужно, однако машины, нужные для того, чтобы запрячь его в работу, обходятся слишком дорого.

Сейчас созданы самые разнообразные прототипы ветроэлектрических генераторов (точнее, ветродвигателей с электрогенераторами). Одни из них похожи на обычную детскую вертушку, другие - на велосипедное колесо с алюминиевыми лопастями вместо спиц. Существуют агрегаты в виде карусели или же в виде мачты с системой подвешенных друг над другом круговых ветроуловителей, с горизонтальной или вертикальной осью вращения, с двумя или пятьюдесятью лопастями.

На рис. 2. схематически показана ветроэлектрическая установка, построенная Национальным управлением по аэронавтике и исследованию космического пространства (НАСА) в штате Огайо. На башне высотой 30,5 м укреплен генератор в поворотном обтекаемом корпусе; на валу генератора сидит пропеллер с двумя алюминиевыми лопастями длиной 19 м и весом 900 кг. Агрегат начинает работать при скорости ветра 13 км/ч, а наибольшей производительности (100 кВт) достигает при 29 км/ч. Максимальная скорость вращения пропеллера составляет 40 об /мин.

В проектировании установки самая трудная проблема состояла в том, чтобы при разной силе ветра обеспечить одинаковое число оборотов пропеллера. Ведь при подключении к сети генератор должен давать не просто r какую-то электрическую энергию, а только переменный ток с заданным числом циклов в секунду, т. е. со стандартной частотой 60 Гц. Поэтому угол наклона лопастей по отношению к ветру регулируют за счет попорота их вокруг продольной оси: при сильном ветре этот угол острее, воздушный поток свободнее обтекает лопасти и отдает им меньшую часть своей энергии. Помимо регулирования лопастей весь генератор автоматически поворачивается на мачте против ветра.

2. Гидроэнергия

Многие тысячелетия верно служит человеку энергия, заключенная в текущей воде. Запасы ее на Земле колоссальны. Недаром некоторые ученые считают, что нашу планету правильнее было бы называть не Земля, а Вода - ведь около трех четвертей поверхности планеты покрыты водой. Огромным аккумулятором энергии служит Мировой океан, поглощающий большую ее часть, поступающую от Солнца. Здесь плещут волны, происходят приливы и отливы, возникают могучие океанские течения. Рождаются могучие реки, несущие огромные массы воды в моря и океаны. Понятно, что человечество в поисках энергии не могло пройти мимо столь гигантских ее запасов. Раньше всего люди научились использовать энергию рек.

Вода была первым источником энергии, и, вероятно, первой машиной, в которой человек использовал энергию воды, была примитивная водяная турбина. Свыше 2000 лет назад горцы на Ближнем Востоке уже пользовались водяным колесом в виде вала с лопатками (рис. 3). Суть устройства сводилась к следующему. Поток воды, отведенный из ручья или речки, давит на лопатки, передавая им свою кинетическую энергию. Лопатки приходят в движение, а поскольку они жестко скреплены с палом, вал вращается. С ним в свою очередь скреплен мельничный жернов, который вместе с валом вращается по отношению к неподвижному нижнему жернову. Именно так работали первые “механизированные” мельницы для зерна. Но их сооружали только в горных районах, где есть речки и ручьи с большим перепадом и сильным напором. На медленно текущих потоках водяные колеса с горизонтально размещенными лопатками малоэффективны.

Шагом вперед было водяное колесо Витрувия (1 в. н. э.), схема которого показана на рис. 4. Это вертикальное колесо с большими лопатками и горизонтальным валом. Вал колеса связан деревянными зубчатыми колесами с вертикальным валом, на котором сидит мельничный жернов. Подобные мельницы и сегодня можно встретить на Малом Дунае; они перемалывают в час до 200 кг зерна.

Почти полторы тысячи лет после распада Римской империи водяные колеса служили основным источником энергии для всевозможных производственных процессов в Европе, заменяя физический труд человека.

Устройства, в которых энергия воды используется для совершения работы, принято называть водяными (или гидравлическими.) двигателями. Простейшие и самые древние из них - описанные выше водяные колеса. Различают колеса с верхним, средним и нижним подводом воды.

В современной гидроэлектростанции масса воды с большой скоростью устремляется на лопатки турбин. Вода из-за плотины течет - через защитную сетку и регулируемый затвор - по стальному трубопроводу к турбине, над которой установлен генератор. Механическая энергия воды посредством турбины передается генераторам и в них преобразуется в электрическую. После совершения работы вода стекает в реку через постепенно расширяющийся туннель, теряя при этом свою скорость.

Гидроэлектростанции классифицируются по мощности на мелкие (с установленной электрической мощностью до 0,2 МВт), малые (до 2 МВт), средние (до 20 МВт) и крупные (свыше 20 МВт). Второй критерий, по которому разделяются гидроэлектростанции, - напор. Различают низконапорные ГЭС (напор до 10 м), среднего напора (до 100 м) и высоконапорные (свыше 100 м). В редких случаях плотины высоконапорных ГЭС достигают высоты 240 м. Такие плотины сосредоточивают перед турбинами водную энергию, накапливая воду и подним ая ее у ровень.

Затраты на строительство ГЭС велики, но они компенсируются тем, что не приходится платить (во всяком случае, в явной форме) за источник энергии - воду. Мощность современных ГЭС, спроектированных на высоком инженерном уровне, превышает 100 МВт, а К.П.Д. составляет 95% (водяные колеса имеют К.П.Д. 50-85%). Такая мощность достигается при довольно малых скоростях вращения ротора (порядка 100 об / мин), поэтому современные гидротурбины поражают своими размерами. Например, рабочее колесо турбины Волжской ГЭС им. В. И. Ленина имеет высоту около 10 м и весит 420 т.

Турбина - энергетически очень выгодная машина, потому что вода легко и просто меняет поступательное движение на вращательное. Тот же принцип часто используют и в машинах, которые внешне совсем не похожи на водяное колесо (если на лопатки воздействует пар, то речь идет о паровой турбине).

Преимущества гидроэлектростанций очевидны - постоянно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды. Да и опыт постройки и эксплуатации водяных колес мог бы оказать немалую помощь гидроэнергетикам. Однако постройка плотины крупной гидроэлектростанции оказалась задачей куда более сложной, чем постройка небольшой запруды для вращения мельничного колеса. Чтобы привести во вращение мощные гидротурбины, нужно накопить за плотиной огромный запас воды. Для постройки плотины требуется уложить такое количество материалов, что объем гигантских египетских пирамид по сравнению с ним покажется ничтожным.

Поэтому в начале XX века было построено всего несколько гидроэлектростанций. Вблизи Пятигорска, на Северном Кавказе на горной реке Подкумок успешно действовала довольно крупная электростанция с многозначительным названием "Белый уголь". Это было лишь началом.

Уже в историческом плане ГОЭЛРО предусматривалось строительство крупных гидроэлектростанций. В 1926 году в строй вошла Волховская ГЭС, в следующем - началось строительство знаменитой Днепровской. Дальновидная энергетическая политика, проводящаяся в нашей стране, привела к тому, что у нас, как ни в одной стране мира, развита система мощных гидроэлектрических станций. Ни одно государство не может похвастаться такими энергетическими гигантами, как Волжские, Красноярская и Братская, Саяно-Шушенская ГЭС. Эти станции, дающие буквально океаны энергии, стали центрами, вокруг которых развились мощные промышленные комплексы.

Но пока людям служит лишь небольшая часть гидроэнергетического потенциала земли. Ежегодно огромные потоки воды, образовавшиеся от дождей и таяния снегов, стекают в моря неиспользованными. Если бы удалось задержать их с помощью плотин, человечество получило бы дополнительно колоссальное количество энергии.

3. Геотермальная энергия

Земля, эта маленькая зеленая планета, -наш общий дом, из которого мы пока не можем, да и не хотим, уходить. По сравнению с мириадами других планет Земля действительно невелика: большая ее часть покрыта уютной и живительной зеленью. Но эта прекрасная и спокойная планета порой приходит в ярость, и тогда с ней шутки плохи - она способна уничтожить все, что милостиво дарила нам с незапамятных времен. Грозные смерчи и тайфуны уносят тысячи жизней, неукротимые воды рек и морей разрушают все на своем пути, лесные пожары за считанные часы опустошают огромные территории вместе с постройками и посевами.

Но все это мелочи по сравнению с извержением проснувшегося вулкана. Едва ли сыщешь на Земле другие примеры стихийного высвобождения природной энергии, которые по силе могли бы соперничать с некоторыми вулканами.

Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Память человечества хранит предания о катастрофических извержениях вулканов, унесших миллионы человеческих жизней, неузнаваемо изменивших облик многих мест на Земле. Мощность извержения даже сравнительно небольшого вулкана колоссальна, она многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится - нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов.

Энергетика земли - геотермальная энергетика базируется на использовании природной теплоты Земли. Верхняя часть земной коры имеет термический градиент, равный 20-30 °С в расчете на 1 км глубины, и, по данным Уайта (1965 г.), количество теплоты, содержащейся в земной коре до глубины 10 км (без учета температуры поверхности), равно приблизительно 12,6-10^26 Дж. Эти ресурсы эквивалентны теплосодержанию 4,6·1016 т угля (принимая среднюю теплоту сгорания угля равной 27,6-109 Дж/т), что более чем в 70 тыс. раз превышает теплосодержание всех технически и экономически извлекаемых мировых ресурсов угля. Однако геотермальная теплота в верхней части земной коры (до глубины 10 км) слишком рассеяна, чтобы на ее базе решать мировые энергетические проблемы. Ресурсы, пригодные для промышленного использования, представляют собой отдельные месторождения геотермальной энергии, сконцентрированной на доступной для разработки глубине, имеющие определенные объемы и температуру, достаточные для использования их в целях производства электрической энергии или теплоты.

С геологической точки зрения геотермальные энергоресурсы можно разделить на гидротермальные конвективные системы, горячие сухие системы вулканического происхождения и системы с высоким тепловым потоком.

4. Энергия мирового океана

Резкое увеличение цен на топливо, трудности с его полученном, сообщения об истощении топливных ресурсов - все эти видимые признаки энергетического кризиса вызвали в последние годы во многих странах значительный интерес к новым источникам энергии, в том числе к энергии Мирового океана.

Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн. км 2) занимают моря и океаны - акватория Тихого океана составляет 180 млн. км2. Атлантического - 93 млн. км 2 , Индийского - 75 млн. км2. Так, тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 1026 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 1018 Дж. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной.

Последние десятилетие характеризуется определенными успехами в использовании тепловой энергии океана. Так, созданы установки мини-ОТЕС и ОТЕС-1 (ОТЕС - начальные буквы английских слов Осеа nТhеrmal Energy Conversion , т.e . преобразование тепловой энергии океана - речь идет о преобразовании в электрическую энергию). В августе 1979 г. вблизи Гавайских островов начала работать теплоэнергетическая установка мини-ОТЕС. Пробная эксплуатация установки в течение трех с половиной месяцев показала ее достаточную надежность. При непрерывной круглосуточной работе не было срывов, если но считать мелких технических неполадок, обычно возникающих при испытаниях любых новых установок. Ее полная мощность составляла в среднем 48,7 кВт, максимальная -53 кВт; 12 кВт (максимум 15) установка отдавала во внешнюю сеть на полезную нагрузку, точнее - на зарядку аккумуляторов. Остальная вырабатываемая мощность расходовалась на собственные нужды установки. В их число входят затраты анергии на работу трех насосов, потери в двух теплообменниках, турбине и в генераторе электрической энергии.

Три насоса потребовались из следующего расчета: один - для подачи теплой виды из океана, второй - для подкачки холодной воды с глубины около 700 м, третий - для перекачки вторичной рабочей жидкости внутри самой системы, т. е. из конденсатора в испаритель. В качестве вторичной рабочий жидкости применяется аммиак.

Установка мини-ОТЕС смонтирована на барже. Под ее днищем помещен длинный трубопровод для забора холодной воды. Трубопроводом служит полиэтиленовая труба длиной 700 м с внутренним диаметром 50 см. Трубопровод прикреплен к днищу судна с помощью особого затвора, позволяющего в случаи необходимости ого быстрое отсоединение. Полиэтиленовая труба одновременно используется и длязаякоривания системы труба-судно. Оригинальность подобного решения не вызывает сомнений, поскольку якорные постановки для разрабатываемых ныне более мощных систем ОТЕС являются весьма серьезной проблемой.

Впервые в истории техники установка мини-ОТЕС смогла отдать во внешнюю нагрузку полезную мощность, одновременно покрыв и собственные нужды. Опыт, полученный при эксплуатации мини-ОТЕС, позволил быстро построить более мощную теплоэнергетическую установку ОТЕС-1 и приступить к проектированию еще более мощных систем подобного типа.

Новые станции ОТЕС на мощность во много десятков и сотен мегаватт проектируются без судна. Это - одна грандиозная труба, в верхней части которой находится круглый машинный зал, где размещены все необходимые устройства для преобразования анергии (рис. 6). Верхний конец трубопровода холодной воды расположится в океане на глубине 25-50 м. Машинный зал проектируется вокруг трубы на глубине около 100 м. Там будут установлены турбоагрегаты, работающие на парах аммиака, а также все остальное оборудование. Масса всего сооружения превышает 300 тыс. т. Труба-монстр, уходящая почти на километр в холодную глубину океана, а в ее верхней части что-то вроде маленького островка. И никакого судна, кроме, конечно, обычных судов, необходимых для обслуживания системы и для связи с берегом.

5. Энергия приливов и отливов

Веками люди размышляли над причиной морских приливов и отливов. Сегодня мы достоверно знаем, что могучее природное явление - ритмичное движение морских вод вызывают силы притяжения Луны и Солнца. Поскольку Солнце находится от Земли в 400 раз дальше, гораздо меньшая масса Луны действует на земные поды вдвое сильнее, чем масса Солнца. Поэтому решающую роль играет прилив, вызванный Луной (лунный прилив). В морских просторах приливы чередуются с отливами теоретически через 6 ч 12 мин 30 с. Если Луна, Солнце и Земля находятся на одной прямой (так называемая сизигия), Солнце своим притяжением усиливает воздействие Луны, и тогда наступает сильный прилив (сизигийный прилив, или большая вода). Когда же Солнце стоит под прямым углом к отрезку Земля-Луна (кв адратура), наступает слабый прилив (квадратурный, или малая вода). Сильный и слабый приливы чередуются через семь дней.

Однако истинный ход прилива и отлива весьма сложен. На него влияют особенности движения небесных тел, характер береговой линии, глубина воды, морские течения и ветер.

Самые высокие и сильные приливные волны возникают в мелких и узких заливах или устьях рек, впадающих в моря и океаны. Приливная волна Индийского океана катится против течения Ганга на расстояние 250 км от его устья. Приливная волна Атлантического океана распространяется на 900 км вверх по Амазонке. В закрытых морях, например Черном или Средиземном, возникают малые приливные волны высотой 50-70 см.

Максимально возможная мощность в одном цикле прилив - отлив, т. е. от одного прилива до другого, выражается уравнением где р - плотность воды, g - ускорение силы тяжести, S - площадь приливного бассейна, R - разность уровней при приливе.

Как видно из (формулы, для использования приливной энергии наиболее подходящими можно считать такие места на морском побережье, где приливы имеют большую амплитуду, а контур и рельеф берега позволяют устроить большие замкнутые “бассейны”.

Мощность электростанций в некоторых местах могла бы составить 2-20 МВт.

Первая морская приливная электростанция мощностью 635 кВт была построена в 1913 г. в бухте Д иоколо Ливерпуля. В 1935 г. приливную электростанцию начали строить в США. Американцы перегородили часть залива Пассамакводи на восточном побережье, истратили 7 млн. долл., но работы пришлось прекратить из-за неудобного для строительства, слишком глубокого и мягкого морского дна, а также из-за того, что построенная неподалеку крупная тепловая электростанция дала более дешевую энергию.

Аргентинские специалисты предлагали использовать очень высокую приливную волну в Магеллановомпроливе, по правительство не утвердило дорогостоящий проект.

С 1967 г. в устье реки Ранс во Франции на приливах высотой до 13 метров работает ПЭС мощностью 240 тыс. кВт с годовой отдачей 540 тыс. кВт*ч. Советский инженер Бернштейн разработал удобный способ постройки блоков ПЭС, буксируемых на плаву в нужные места, и рассчитал рентабельную процедуру включения ПЭС в энергосети в часы их максимальной нагрузки потребителями. Его идеи проверены на ПЭС, построенной в 1968 году в Кислой Губе около Мурманска; своей очереди ждет ПЭС на 6 млн. кВт вМезенском заливе на Баренцевом море.

6. Солнечная энергия

Для древних народов Солнце было богом. В Верхнем Египте, культура которого восходит к четвертому тысячелетию до н.э., верили, что род фараонов ведет свое происхождение от Ра - бога Солнца. Надпись на одной из пирамид представляет фараона как наместника Солнца на Земле, “который исцеляет нас своей заботой, когда выйдет, подобно Солнцу, что дает зелень землям. Каждый взор устрашится, когда увидит его в образе Ра, что встает над горизонтом”.

Своей жизнетворной силой Солнце всегда вызывало у людей чувства поклонения и страха. Народы, тесно связанные с природой, ждали от него милостивых даров - урожая и изобилия, хорошей погоды и свежего дождя или же кары - ненастья, бурь, града. Поэтому в народном искусстве мы всюду видим изображение Солнца: над фасадами домов, на вышивках, в резьбе и т. п.

Почти все источники энергии, о которых мы до сих пор говорили, так или иначе используют энергию Солнца: уголь, нефть, природный газ суть не что иное, как “законсервированная” солнечная энергия. Она заключена в этом топливе с незапамятных времен; под действием солнечного тепла и света на Земле росли растения, накапливали в себе энергию, а потом в результате длительных процессов превратились в употребляемое сегодня топливо. Солнце каждый год даст человечеству миллиарды тонн зерна и древесины. Энергия рек и горных водопадов также происходит от Солнца, которое поддерживает кругооборот воды на Земле.

Во всех приведенных примерах солнечная энергия используется косвенно, через многие промежуточные превращения. Заманчиво было бы исключить эти превращения и найти способ непосредственно преобразовывать тепловое и световое излучение Солнца, падающее на Землю, в механическую или электрическую энергию. Всего за три дня Солнце посылает на Землю столько энергии, сколько ее содержится во всех разведанных запасах ископаемых топлив, а за 1 с - 170 млрд. Дж. Большую часть этой энергии рассеивает или поглощает атмосфера, особенно облака, и только треть ее достигает земной поверхности. Вся энергия, испускаемая Солнцем, больше той ее части, которую получает Земля, в 5000000000 раз. Но даже такая “ничтожная” величина в 1600 раз больше энергии, которую дают все остальные источники, вместе взятые. Солнечная энергия, падающая на поверхность одного озера, эквивалентна мощности крупной электростанции.

Согласно легенде Архимед, находясь на берегу, уничтожил неприятельский римский флот под Сиракузами. Как? При помощи зажигательных зеркал. Известно, что подобные зеркала делались также в VI веке. А в середине XVIII столетия французский естествоиспытатель Ж. Бюффон производил опыты с большим вогнутым зеркалом, состоящим из множества маленьких плоских. Они были подвижными и фокусировали в одну точку отраженные солнечные лучи. Этот аппарат был способен в ясный летний день с расстояния 68 м довольно быстро воспламенить пропитанное смолой дерево. Позднее во Франции было изготовлено вогнутое зеркало диаметром 1,3 м, в фокусе которого можно было за 16 секунд расплавить чугунный стержень. В Англии же отшлифовали большое двояковыпуклое стекло, с его помощью удавалось расплавлять чугун за три секунды и гранит - за минуту.

В конце XIX века на Всемирной выставке в Париже изобретатель О. Мушо демонстрировал инсолятор - всущности первое устройство, превращавшее солнечную энергию в механическую. Но принцип был тем же: большое вогнутое зеркало фокусировало солнечные лучи на паровом котле, который приводил в движение печатную машину, делавшую по 500 оттисков газеты в час. Через несколько лет в Калифорнии построили действующий по такому же принципу конический рефлектор в паре с паровой машиной мощностью 15 л. с.

И хотя с той поры то в одной, то в другой стране появляются экспериментальные рефлекторы-нагреватели, а в публикуемых статьях все громче напоминают о неиссякаемости нашего светила, рентабельнее они от этого не становятся и широкого распространения пока не получают: слишком дорогое удовольствие это даровое солнечное излучение.

Сегодня для преобразования солнечного излучения в электрическую энергию мы располагаем двумя возможностями: использовать солнечную энергию как источник тепла для выработки электроэнергии традиционными способами (например, с помощью турбогенераторов) или же непосредственно преобразовывать солнечную энергию в электрический ток в солнечных элементах. Реализация обеих возможностей пока находится в зачаточной стадии. В значительно более широких масштабах солнечную энергию используют после ее концентрации при помощи зеркал - для плавления веществ, дистилляции воды, нагрева, отопления и т. д.

Поскольку энергия солнечного излучения распределена по большой площади (иными словами, имеет низкую плотность), любая установка для прямого использования солнечной энергии должна иметь собирающее устройство (коллектор) с достаточной поверхностью.

Простейшее устройство такого рода-плоский коллектор; в принципе это черная плита, хорошо изолированная снизу. Она прикрыта стеклом или пластмассой, которая пропускает свет, но не пропускает инфракрасное тепловое излучение. В пространстве между плитой и стеклом чаще всего размещают черные трубки, через которые текут вода, масло, ртуть, воздух, сернистый ангидрид и т. п. Солнечное излучение, проникая через стекло или пластмассу в коллектор, поглощается черными трубками и плитой и нагревает рабочее вещество в трубках. Тепловое излучение не может выйти из коллектора, поэтому температура в нем значительно выше (па 200-500°С), чем температура окружающего воздуха. В этом проявляется так называемый парниковый эффект. Обычные садовые парники, по сути дела, представляют собой простые коллекторы солнечного излучения. Но чем дальше от тропиков, тем менее эффективен горизонтальный коллектор, а поворачивать его вслед за Солнцем слишком трудно и дорого. Поэтому такие коллекторы, как правило, устанавливают под определенным оптимальным углом к югу.

Более сложным и дорогостоящим коллектором является вогнутое зеркало, которое сосредоточивает падающее излучение в малом объеме около определенной геометрической точки - фокуса. Отражающая поверхность зеркала выполнена из металлизированной пластмассы либо составлена из многих малых плоских зеркал, прикрепленных к большому параболическому основанию. Благодаря специальным механизмам коллекторы такого типа постоянно повернуты к Солнцу-это позволяет собирать возможно большее количество солнечного излучения. Температура в рабочем пространстве зеркальных коллекторов достигает 3000 °С и выше.

Солнечная энергетика относится к наиболее материалоемким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Подсчеты показывают, что для производства 1 МВт*год электрической энергии с помощью солнечной энергетики потребуется затратить от 10 000 до 40 000 человеко-часов. В традиционной энергетике на органическом топливе этот показатель составляет 200-500 человеко-часов.

Пока еще электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они проведут на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы. Но, тем не менее, станции-преобразователи солнечной энергии строят и они работают.

С 1988 года на Керченском полуострове работает Крымская солнечная электростанция. Кажется, самим здравым смыслом определено ее место. Уж если где и строить такие станции, так это в первую очередь в краю курортов, санаториев, домов отдыха, туристских маршрутов; в краю, где надо много энергии, но еще важнее сохранить в чистоте окружающую среду, само благополучие которой, и прежде всего чистота воздуха, целебно для человека.

Крымская СЭС невелика - мощность всего 5 МВт. В определенном смысле она - проба сил. Хотя, казалось бы, чего еще надо пробовать, когда известен опыт строительства гелиостанций в других странах.

По мнению специалистов, наиболее привлекательной идеей относительно преобразования солнечной энергии является использование фотоэлектрического эффекта в полупроводниках.

Но, для примера, электростанция на солнечных батареях вблизи экватора с суточной выработкой 500 МВт·ч (примерно столько энергии вырабатывает довольно крупная ГЭС) при к.п.д. 10% потребовала бы эффективной поверхности около 500000 м 2 . Ясно, что такое огромное количество солнечных полупроводниковых элементов может. о купиться только тогда, когда их производство будет действительно дешево. Эффективность солнечных электростанций в других зонах Земли была бы мала из-за неустойчивых атмосферных условий, относительно слабой интенсивности солнечной радиации, которую здесь даже в солнечные дни сильнее поглощает атмосфера, а также колебаний, обусловленных чередованием дня и ночи.

Тем не менее солнечные фотоэлементы уже сегодня находят свое специфическое применение. Они оказались практически незаменимыми источниками электрического тока в ракетах, спутниках и автоматических межпланетных станциях, а на Земле - в первую очередь для питания телефонных сетей в не электрифицированных районах или же для малых потребителей тока (радиоаппаратура, электрические бритвы и зажигалки и т.п.). Полупроводниковые солнечные батареи впервые были установлены на третьем советском искусственном спутнике Земли (запущенном на орбиту 15 мая 1958 г.).

В настоящее время оценки не в пользу солнечных электростанций: сегодня эти сооружения все еще относятся к наиболее сложным и самым дорогостоящим техническим методам использованиягелиоэнергии. Нужны новые варианты, новые идеи. Недостатка в них нет. С реализацией хуже.

Заключение

Роль энергии в поддержании и дальнейшем развитии цивилизации очень велика. В современном обществе трудно найти хотя бы одну область человеческой деятельности, которая не требовала бы - прямо или косвенно - больше энергии, чем ее могут дать мускулы человека. Потребление энергии - важный показатель жизненного уровня. В те времена, когда человек добывал пищу, собирая лесные плоды и охотясь на животных, ему требовалось в сутки около 8 МДж энергии. После овладения огнем эта величина возросла до 16 МДж: в примитивном сельскохозяйственном обществе она составляла 50 МДж, а в более развитом - 100 МДж.

В процессе развития цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные не потому, что старый источник был исчерпан.

Сначала использовали энергию при сжигании древесины. Затем древесина уступила место каменному углю. Запасы древесины казались безграничными, но паровые машины требовали более калорийного "корма" .Н о в дальнейшем больше стали использовать нефть вместо угля. Но Э ти ресурсытруднодобываемы, и с каждым годом будут стоить все дороже.

Самым мощным источником энергии является ядерный - лидер энергетики.

Запасы урана, если сравнивать их с запасами угля, не столь уж и велики. Но зато на единицу веса он содержит в себе энергии в миллионы раз больше, чем уголь.

При получении электроэнергии на АЭС нужно затратить, считается, в сто тысяч раз меньше средств и труда, чем при извлечении энергии из угля. И ядерное горючее приходит на смену нефти и углю... Всегда было так: следующий источник энергии был и более мощным. То была, если можно так выразиться, "воинствующая" линия энергетики.

Сейчас, в конце 20 века, начинается новый, значительный этап земной энергетики. Появилась энергетика "щадящая" ,а льтернативная, не загрязняющая уже сильно поврежденную биосферу.

В будущем при интенсивном развитии энергетики возникнут рассредоточенные источники энергии не слишком большой мощности, но зато с высоким КПД, экологически чистые, удобные в обращении.

Например - быстрый старт электрохимической энергетики, которую позднее, видимо, дополнит энергетика солнечная. Энергетика очень быстро аккумулирует, ассимилирует, вбирает в себя все самые новейшие идей, изобретения, достижения науки. Это и понятно: энергетика связана буквально со В сем, и Все тянется к энергетике, зависит от нее.

Поэтому энергохимия, водородная энергетика, космические электростанции, энергия, запечатанная в антивеществе, кварках, "черных дырах", вакууме, - это всего лишь наиболее яркие вехи, штрихи, отдельные черточки того сценария, который пишется на наших глазах и который можно назвать Завтрашним Днем Энергетики.

В заключение можно сделать вывод, что альтернативные формы использования энергии неисчислимы при условии, что нужно разработать для этого эффективные и экономичные методы. Главное - проводить развитие энергетики в правильном направлении.

Библиографический список

1. Балаков, Ю. Н. Проектирование схем электроустановок [Текст] / Ю. Н. Балаков, М. Ш. Мисриханов, А. В. Шунтов. - М.: Издательский дом МЭИ, 2006. - 288 с.

2. Веников, В.А. Электрические системы. Электрические сети [Текст] / В. А. Веников, А. А. Глазунов, Л.А. Жуков. - М.: Высшая школа, 1998. - 510 с.

3. Гук, Ю. Б. Анализ надежности электроэнергетических установок [Текст] / Ю. Б. Гук и др. - СПб.: Энергоатомиздат, 1988. - 480 с.

4. Зорин, В. В. Надежность систем электроснабжения [Текст] / В. В. Зорин, В. В. Тисленко, Ф. Клеппель, Г. Адлер. - Киев: Высшая школа, 1984. - 513 с.

5. Михайлов, В. В. Надежность электроснабжения промышленных предприятий [Текст] / В. В. Михайлов и др. - М.: Энергоатомиздат, 1982. - 320 с.

Размещено на Allbest.ru

...

Подобные документы

    Виды нетрадиционных возобновляемых источников энергии, технологии их освоения. Возобновляемые источники энергии в России до 2010 г. Роль нетрадиционных и возобновляемых источников энергии в реформировании электроэнергетического комплекса Свердловской обл.

    реферат , добавлен 27.02.2010

    Существующие источники энергии. Мировые запасы энергоресурсов. Проблемы поиска и внедрения нескончаемых или возобновляемых источников энергии. Альтернативная энергетика. Энергия ветра, недостатки и преимущества. Принцип действия и виды ветрогенераторов.

    курсовая работа , добавлен 07.03.2016

    Использование возобновляемых источников энергии. Энергия солнца, ветра, биомассы и падающей воды. Генерирование электричество из геотермальных источников. Сущность геотермальной энергии. Геотермальные электрические станции с комбинированным циклом.

    реферат , добавлен 15.05.2010

    Характеристика возобновляемых источников энергии: основные аспекты использования; преимущества и недостатки в сравнении с традиционными; перспективы использования в России. Способы получения электричества и тепла из энергии солнца, ветра, земли, биомассы.

    курсовая работа , добавлен 30.07.2012

    Классификация возобновляемых источников энергии. Современное состояние и перспективы дальнейшего развития гидро-, гелео- и ветроэнергетики, использование энергии биомассы. Солнечная энергетика в мире и в России. Развитие биоэнергетики в мире и в РФ.

    курсовая работа , добавлен 19.03.2013

    Изучение опыта использования возобновляемых источников энергии в разных странах. Анализ перспектив их массового использования в РФ. Основные преимущества возобновляемых альтернативных энергоносителей. Технические характеристики основных типов генераторов.

    реферат , добавлен 07.05.2009

    Распространение солнечной энергии на Земле. Способы получения электричества из солнечного излучения. Освещение зданий с помощью световых колодцев. Получение энергии с помощью ветрогенераторов. Виды геотермальных источников энергии и способы ее получения.

    презентация , добавлен 18.12.2013

    Использование ветрогенераторов, солнечных батарей и коллекторов, биогазовых реакторов для получения альтернативной энергии. Классификация видов нетрадиционных источников энергии: ветряные, геотермальные, солнечные, гидроэнергетические и биотопливные.

    реферат , добавлен 31.07.2012

    Солнечная, ветряная, геотермальная энергия и энергия волн. Использование альтернативной энергии в России. Исследование параметров солнечной батареи и нестандартных источников энергии. Реальность использования альтернативной энергии на практике.

    реферат , добавлен 01.01.2015

    Использование возобновляемых источников энергии, их потенциал, виды. Применение геотермальных ресурсов; создание солнечных батарей; биотопливо. Энергия Мирового океана: волны, приливы и отливы. Экономическая эффективность использования энергии ветра.

Окружающий нас мир обладает поистине неиссякаемым источником различных видов энергии. Некоторые из них еще в полной мере не используются и в нынешнее время – энергия Солнца, энергия взаимодействия Земли и Луны, энергия термоядерного синтеза, энергия тепла Земли.

Сейчас энергия играет решающую роль в развитии человеческой цивилизации. Существует тесная взаимосвязь между расходом энергии и объемом выпускаемой продукции. Энергетика имеет большое значение в жизни человечества. Уровень ее развития отражает уровень развития производительных сил общества, возможности научно-технического прогресса и уровень жизни населения.

Энергетические ресурсы – это материальные объекты, в которых сосредоточена энергия, пригодная для практического использования человеком. Энергетические ресурсы – носители энергии, которые используются в настоящее время или могут быть полезно использованы в перспективе .

Энергия – всеобщая основа природных явлений, базис культуры и всей деятельности человека. В то же время под энергией (греческое – действие, деятельность ) понимается количественная оценка различных форм движения материи, которые могут превращаться одна в другую .

В зависимости от уровня проявления, можно выделить энергию макромира – гравитационную, энергию взаимодействия тел – механическую, энергию молекулярных взаимодействий – тепловую, энергию атомных взаимодействий – химическую, энергию излучения – электромагнитную, энергию, заключенную в ядрах атомов – ядерную.

Топливно-энергетические ресурсы, используемые человечеством: нефть, природный газ, уголь, древесина, ядерное топливо и др.

2.Традиционные и альтернативные источники энергии

Энергия, непосредственно извлекаемая в природе (энергия топлива, воды, ветра, тепловая энергия Земли, ядерная), и которая может быть преобразована в электрическую, тепловую, механическую, химическую называетсяпервичной .

Рис. 1 Классификация первичной энергии

При классификации первичной энергии выделяют традиционные инетрадиционные виды энергии. К традиционным относятся такие виды энергии, которые на протяжении многих лет широко использовались человеком. К нетрадиционным видам энергии относят такие виды, которые начали использоваться сравнительно недавно.К традиционным видам первичной энергии относят: органическое топливо (уголь, нефть и т.д.), гидроэнергию рек и ядерное топливо (уран, торий и др.). Энергия, получаемая человеком, после преобразования первичной энергии на специальных установках - станциях,называется вторичной (электрическая энергия, энергия пара, горячей воды и т.д.).Единственный способ преодоления энер.кризиса – это масштабное использование нетрадиц. возобновляемых источников энергии.Ветровая энергетика – это получение механической энергии от ветра с последующим преобразованием ее в электрическую. Имеются ветровые двигатели с вертикальной и горизонтальной осью вращения. Энергию ветра можно успешно использовать при скорости ветра 5 и более м/с. Недостатком является шум.Гелиоэнергетика получение энергии от Солнца.Фотоэлектрогенераторы для прямого преобразования энергии излучения Солнца, собранные из большого числа последовательно и параллельно соединенных элементов, получили названиесол нечных батарей . Биоэнергетика это энергетика, основанная на использовании биотоплива. Она включает использование растительных отходов, искусственное выращивание биомассы (водорослей, быстрорастущих деревьев) и получение биогаза.

Cтраница 1


Основные источники энергии, используемые человеком.  

Основной источник энергии, используемый автотрофа-ми, - Солнце. Образно говоря, автотрофы являются кормильцами биосферы: они не только питаются сами, но и кормят (своим телом) других. Поэтому их называют продуцентами. Биомасса, создаваемая ими, называется первичной.  

Основными источниками энергии на нефтеперерабатывающих заводах являются тепло, водяной пар и электроэнергия. Для получения всех видов энергии расходуется до 6 % перерабатываемой нефти, причем половина этого - количества сжигается на ТЭЦ, а другая - в трубчатых печах технологических установок. В связи с этим одной из важнейших проблем нефтегазоперфаботки является повышение технико-экономической эффективности всех технологических процессов.  

Линии излучения некоторых лазеров.| Линии излучения некоторых лазеров, слабо или умеренно поглощаемые в атмосфере.  

Основным источником энергии для всех процессов, происходящих в биосфере, является солнечное излучение. Атмосфера, окружающая Землю, слабо поглощает коротковолновое излучение Солнца, которое, в основном, достигает земной поверхности. Некоторая часть солнечного излучения поглощается и рассеивается атмосферой. Поглощение падающей солнечной радиации обусловлено наличием в атмосфере озона, углекислого газа, паров воды, аэрозолей.  

Основным источником энергии, аккумулируемой в аденозинтрифосфате (АТФ), является глюкоза. В клетках глюкоза с помощью ферментных систем сначала подвергается бескислородному расщеплению до двух молекул молочной кислоты СН3СН (ОН) СООН. Энергия, выделяемая при расщеплении одной молекулы глюкозы при гликолизе, аккумулируется в двух вновь образованных молекулах АТФ. По мере необходимости АТФ гидролизуется на аденозиндифосфат (АДФ) и фосфорную кислоту с выделением около 10 ккал тепловой энергии. Молочная кислота подвергается дальнейшему кислородному расщеплению в последовательных окислительно-восстановительных реакциях до углекислого газа и водорода, который, в свою очередь, окисляется кислородом воздуха до воды. Энергия, освобождаемая при этом, расходуется на регенерацию АТФ, то есть на присоединение к АДФ третьего остатка фосфорной кислоты. В результате полного расщепления двух молекул молочной кислоты выделяется энергия, достаточная для синтеза 36 молекул АТФ из АДФ.  

Основным источником энергии на Земле является Солнце.  

Основными источниками энергии, потребляемой промышленностью, являются горючие ископаемые и продукты их переработки, энергия воды, биомасса и ядерное топливо. В значительно меньшей степени используются энергия ветра, солнца, приливов, геотермальная энергия. Мировые запасы основных видов топлива оцениваются в 1 28 - Ю13 тонн УТ, в том числе, ископаемые угли 1 12 - Ю13 тонн, нефть 7 4 - Ю11 тонн и природный газ 6 3 - Ю11 тонн УТ.  

Основным источником энергии (тепла) в процессе азотирования является реакция азотирования, которая дает до 96 % от общего прихода энергии. Электроэнергия, подводимая при разогреве печи, составляет всего 2 - 3 % от общего прихода энергии.  

Основным источником энергии, поступающей на Землю, является Солнце. Солнечное излучение формируется в результате интенсивного взаимодействия с веществом в верхних слоях Солнца и находится с ним в равновесии. Электромагнитное излучение Солнца можно охарактеризовать двумя температурами - энергетической, которая определяется законом Стефана-Больцмана, и спектральной, определяемой из закона Вина. Для равновесного излучения эти температуры равны. Показателем неравновесности излучения может служить разность энергетической и спектральной температур. По мере удаления от поверхности Солнца энергетическая температура падает, а спектральная температура остается без изменения. Таким образом, неравновесность излучения по мере удаления от Солнца возрастает. Поэтому с увеличением расстояния от Солнца создаются более благоприятные условия для процессов самоорганизации, которые протекают в неравновесных условиях. С другой стороны, сложность образуемых систем зависит от температуры. С увеличением расстояния от Солнца температура падает, поэтому существует некоторое оптимальное расстояние, на котором возможно образование систем максимальной сложности. Уровень самоорганизации системы определяется степенью отклонения от равновесного состояния и уровнем сложности. В солнечной системе наиболее оптимальное сочетание названных параметров наблюдается на расстояниях, соответствующих орбите Земли. Таким образом, в Солнечной системе наибольший уровень самоорганизации может быть достигнут на Земле.  

Основными источниками энергии в пластах являются напор краевой воды, подошвенной воды, газа и газовой шапки; давление растворенного газа в нефти в момент выделения газа из раствора; сила тяжести; упругость пласта и насыщающих его нефти, воды и газа. Эти силы могут проявляться раздельно или совместно.  

Основными источниками энергии в пластах являются напор краевой воды, подошвенной воды, газа газовой шапки, давление растворенного газа в нефти в момент выделения газа из раствора, сила тяжести, упругость пласта и насыщающих его нефти, воды и газа. Эти силы могут проявляться раздельно или совместно. Таким образом, энергетические ресурсы нефтеносного пласта характеризуются существующим в нем давлением. Чем выше давление, тем больше при прочих равных условиях запасы энергии и тем полнее может быть использована залежь нефти.  

Основным источником энергии в промышленности, сельском хозяйстве и в других отраслях народного хозяйства служит топливо. В зависимости от физического состояния топливо подразделяется на твердое, жидкое и газообразное.  

Основными источниками энергии для человечества были мускульная сила людей и рабочего скота, а для обогрева жилищ и приготовления пищи использовалась древесина и навоз домашних животных. Однако доля древесины и древесного угля была велика, а мускульная сила человека и животных применялась по-прежнему.  

Для существования живых организмов, работы машин и механизмов необходима энергия . Организмы ее получают вместе с продуктами питания, а к машинам и меха-низмам энергия поступает из различных источников. Рассмот-рим, какие источники энергии для машин и механизмов ис-пользуются человеком.

Самым распространенным источником энергии на Земле яв-ляются горючие полезные ископаемые — нефть, газ, каменный уголь, торф. Сжигая их на тепловых электростанциях, в двига-телях внутреннего сгорания автомобилей, тракторов, судов, тепловозов, самолетов, получают энергию. Недостатком этого способа добычи энергии является загрязнение окружающей сре-ды — в атмосферу попадает много вредных веществ. К тому же запасы нефти, газа, угля ограничены. И сжигать их только для получения энергии экономически невыгодно, поскольку из них еще изготавливают тысячи цепных веществ и материалов, в частности резину, пластмассы, стиральные порошки, линолеум, искусственную кожу.

Другой мощный источник энергии — вода , которая падает с высоты искусственной преграды — плотины — и заставляет дви-гаться механизмы, вырабатывающие на гидроэлектростанциях электрическую энергию. Из рисунка 120 становится понятным, что гидроэлектростанции сооружают на полноводных реках с соответствующим рельефом местности. Атмосферу такой источ-ник энергии не загрязняет, а вот природным экосистемам при-чиняет вред. Выясним, какой.

Неотъемлемой частью гидроэлектростанции является искус-ственный водоем — водохранилище, строительство которого требует затопления огромных территорий. Вследствие этого под водой оказываются плодородные почвы. Механизмы таких станций частично уничтожают обитателей водоемов, а плотина перекрывает путь рыбе к нерестилищам.

Например, Днепрогэс — первую в Украине гидроэлектростанцию — со-оружено 70 лет тому назад на Днепре в районе Запорожья. Сей-час воды Днепра отдают людям свою энергию еще на пяти гид-роэлектростанциях. Существуют в Украине гидроэлектростанции и на других реках, в частности Днестровская и Теребле-Рекская в За-карпатье.

Люди издавна использовали энергию ветра — при помощи ветряных мельниц перемалывали зерно на муку, на челны уста-навливали паруса. А в странах, расположенных на побережье морей, где дуют постоянные ветры, сейчас сооружают ветряные электростанции.

Человек старается использовать и такой мощный источник энергии, как Солнце. В этом ему помогают специальные устрой-ства — солнечные батареи . Однако, как вы догадываетесь, ночью или в пасмурный день солнечные батареи не работают.

Не так давно человек освоил особую энергию — энергию атома , или ядерную (рис. 121). Ученые выяснили, что наименьшую сос-тавляющую часть молекул — атом — можно расщепить, то есть раз-рушить. При этом выделяется энергия. В точке, поставленной на бумаге графитовым карандашом, атомов Карбона больше, чем можно увидеть звезд на небе. Поэтому атомное топливо выгодно тем, что для производства энергии его необходи-мо совсем немного по сравнению с нефтью, газом, углем. Материал с сайта

Самое распространенное топливо атомных станций — атомы химического элемента Урана. На Земле имеются запасы урановых руд. Этот источник энергии не загрязняет ни воздух, ни воду, если им правильно пользоваться. Однако в слу-чае аварии на атомной электростанции, природе и человеку при-чиняется непоправимый вред, как это произошло на Черно-быльской АЭС в 1986 году.

  • Жизнедеятельность организмов, работа машин и механизмов требуют затрат энергии.
  • Необходимую для жизнедеятельности энергию организмы по-лучают вместе с продуктами питания.
  • Для машин источниками энергии являются топливо, вода, пада-ющая с высоты, ветер и некоторые другие.

На этой странице материал по темам:

  • Полезные ископаемые как источники энергии

  • Источники энергии земли рефераты

  • Ветер полезное ископаемое

  • сайт

  • Горючие ископаемые как источник энергии реферат

Вопросы по этому материалу:

Солнце – единственная звезда нашей планетной системы. Почти идеальная сфера, которая больше Земли в 110 раз и в 330 тысяч раз тяжелее! Среднее расстояние от Земли до Солнца – примерно 150 млн. километров, а это значит, что свет от него до нашей планеты доходит за 8 минут 20 секунд.

Но даже без знания всех этих фактов, еще в доисторические времена, многие народы почитали Солнце Богом. Но и если отбросить всю эту божественную составляющую, кто сегодня будет спорить, что без него по-прежнему не представима жизнь на Земле. Да чего там, когда Солнце скрыто за облаками, то и жизнь кажется какой-то унылой.

Солнце способно дарить не только тепло и свет, но и радость жизни.

Но воспевая, изображая, обожествляя и исследуя наше светило, человечество также всегда стремилось использовать его. Лучи света – это же даровая энергия, причем бесплатная и постоянная. Так за чем же дело стало...

Оказывается, использовать эти лучи можно лишь двумя способами – по крайней мере, на сегодняшний день. Первый – это получать электричество с помощью, например, кремниевых панелей. И второй способ – использовать непосредственно солнечное тепло. Каким образом? Для этого придумано очень много оригинальных и необычных устройств.

Солнечные панели.

Их часто, хотя и неправильно, именуют солнечными батареями. Солнечные панели уже давно хорошо узнаваемые и распространённые во всем мире, а их область применения – от крыш домов до космических станций, от судов до автомобилей.


Солнечные панели и солнечные коллекторы на крыше одного дома.

Солнечные панели превращают свет в электрический ток, в то время как солнечные коллекторы превращают его же в тепло. Основой панелей служат кремниевые пластинки. К ним подключаются аккумуляторы, инвертор, контроллер и иногда многое другое – проще говоря, устройство это не из простых.

Солнечные коллекторы.

Коллекторы же сделаны из обычного металла и к ним подведена лишь только жидкость-теплоноситель, которая циркулируя через коллектор, нагревается. В итоге эта жидкость кипятит, скажем, бак с водопроводной водой. Устройство это, как видим, гораздо проще, хотя и технологичней чем, скажем, выкрашенный краской бачок летнего дачного душа.

Плоский солнечный коллектор состоит из следующих элементов:

  • кофр, в который заключены все детали устройства;
  • абсорбер – элемент, поглощающий солнечные излучения;
  • термоизолирующий слой;
  • теплоноситель;

Это четыре основные части коллектора. Но конечно главное здесь не их количество, а то каким образом все они вместе работают.

Давайте сначала узнаем, как изготавливают солнечные коллекторы. Сперва сваривают абсорбер, который служит основой будущему устройству. Он похож на батарею, только наоборот – батарея излучает тепло от внутреннего источника, а абсорбер забирает тепло от внешнего источника – Солнца.

Проверяют готовые абсорберы на наличие микротрещин путем помещения их в небольшую емкость с жидкостью. Для этого применяется простой дедовский способ – если при давлении в 10 атмосфер, на поверхности детали не появляются пузырьки, то она готова к использованию.

Затем одобренный абсорбер покрывают специальным селективным покрытием (оптическое покрытие, способное поглощать солнечный свет). В специальной вакуумной камере происходит ионно-плазменное распыление, в результате которого абсорбер покрывается на вид слегка радужной синеватой тонкой пленкой, состоящей из нескольких слоев, каждый из которых имеет разный коэффициент преломления.

В итоге, в результате такого физического явления, как интерференция достигаются необходимые физические свойства. Волны, поступающие на поверхность и излучающие – как бы складываются и, собственно, излучение становится минимальным. Получаемое покрытие обладает двумя важными свойствами – поглощение энергии солнечного излучения и минимальное собственное тепловое излучение.

Затем абсорбер помещают в пластиковый кофр с термоизоляцией, накрывают сверху прозрачным стеклом и коллектор готов. Естественно, сердце всего этого устройства – абсорбер и специальное прикрытие, без которого солнечный коллектор, как автомобиль без топлива. Именно это покрытие способно удерживать до 95% солнечной энергии, переводя её в тепло.

Солнечные коллекторы – это простейший способ нагревать воду. Ничего особенного не требуется – только само устройство и Светило, а дальше всё произойдет само собой. Но на этом механизмы, которые используют энергию солнца, не заканчиваются.

Солнечный парус.

Одно из самых гениальных и амбициозных «солнечных» устройств было изобретено в одном из российских научных институтов. Казалось бы, если существуют космические корабли, то у них должны быть и паруса. Именно эта мысль натолкнула отечественных ученых на изобретение солнечного паруса – устройства, использующего для перемещения в космосе обыкновенный солнечный свет.

Принцип действия солнечного паруса действительно напоминает работу обычных морских парусов. Как мы знаем, их наполняет ветер, что позволяет судно двигаться. Солнечный же парус наполняют фотоны света, бомбардируя зеркальную поверхность паруса и отражаясь от неё, они сообщают ему импульс, что позволяет такому кораблю в условиях космоса лететь, причем с всевозрастающей скоростью. Есть только два важных условия – корабль должен быть как можно меньше, а парус – как можно больше.

Есть также солнечные коллекторы, которые часто путают с панелями, хоть это два совершенно разных устройства. Действительно, они оба работают от Солнца, но отличаются друг от друга, как двигатель внутреннего сгорания от двигателя водородного.


Блестящая поверхность солнечного паруса.

Материал, из которого сделан парус – тончайшая полимерная пленка толщиной всего пару микрон. Вся сила, которая создается площадью солнечного паруса, составляет всего на всего 4 грамма. Но при постоянном длительном воздействии, можно добиться ускорения, которое способно привести к скоростям, близким к скорости света!

Такие паруса и прицепленные к ним миниатюрные космические аппараты хотели когда-то использовать для полета на Марс. Весь путь должен был занять 500 дней, причем без применения топлива для движения, поскольку всё делает Солнце.

Существовал и другой вариант. Расположить такие паруса на орбите Земли и отражать солнечный свет на ночные города. Это привело бы к существенно экономии электроэнергии, да и светло было бы почти как днем.

Но, к сожалению, оказавшись в космосе, космический аппарат так и не смог развернуть все лепестки солнечного паруса. Но идея жива по сей день, и очень соблазнительна благодаря своей простоте и перспективности.

Солнечная печь.

В небольшом французском городке Фонт Ромео на юге Франции расположено необычное здание с очень простым и лаконичным названием – «Солнечная печь». Выбор места для строительства этого здания был не случаен, ведь именно в этих местах круглый год практически гарантировано: либо ясное небо, либо небольшая облачность. Здесь также почти никогда не бывает дождей и пасмурной погоды.

Здание было возведено в 70-х годах прошлого столетия и представляет собой действительно большую солнечную печь – второе название строения. Но даже без официальных громких эпитетов, глядя на эту фантастическую необычность, дух захватывает.

Вообще в мире существует всего две большие солнечные печи. И, что примечательно, вторая расположена в Узбекистане. И несмотря на огромное расстояние между ними, принцип работы обеих печей одинаковый.


Здание «Солнечная печь» во Франции.

Одни зеркала (гелиостаты) отражают солнечный свет, а другие зеркала (концентраторы) фокусируют лучи в одной точке, в которой в результате достигается температура более 3000 градусов Цельсия! Чтобы стало понятно, какое это пекло, скажем, что в природе практически не существует материала, который бы нельзя было расплавить в солнечной печи.

Большая солнечная печь Франции – здание с параболическим зеркалом (гелиоконцентратором), напротив которого находиться поле с зеркальными квадратами (гелиостатами). Размер каждого из них 7x6 метров, а общая площадь составляет более 2800 квадратных метров. Задача гелиостатов очень простая – они отображают солнечный свет на большое параболическое зеркало, фактически посылая на него огромный солнечный зайчик.

Парабола здания размером 50х40 метров, состоит из 9000 зеркал, каждое из которых индивидуально сориентировано с помощью четырех винтов. Во время строительства более двух лет ушло лишь на то, чтобы сфокусировать каждое зеркало под нужным углом. Это позволило достичь мощности в 1 Мегават – именно столько способны дать собранные от нее в пучок солнечные лучи.

В здании Солнечной печи расположены лаборатории с миниатюрными печами. Здесь ученые проводят бесконечные эксперименты и плавят под воздействием солнечных лучей самые разные материалы. Такие печи способны расплавить что угодно – дерево, камень и даже сталь. Если сила солнца настолько очевидна в малых печах, то можно себе только представить, что же будет в фокусе большого параболического зеркала.

Конечно, этого можно добиться и в обычных печах, однако в солнечной печи это происходит за секунды. Кроме того, раскаляются образцы от солнца, а значит, сплавы получаются без примесей – чистейшие металлы, керамика, композиты. И самый важный аргумент – за энергию (солнечный свет) никто ничего не платит.

Солнце – основа любой энергии на нашей планете.

Солнце – это первый самый мощный и по-прежнему самый доступный источник энергии на нашей планете. Его согревающее тепло может ощутить каждый – стоит в ясный день только протянуть руку или посмотреть вверх.

Различные устройства способны усилить световое излучение многократно. Но кроме уже известных нам солнечных панелей, коллекторов, концентраторов и парусов, по сути, все источники энергии на Земле – это тоже Солнце. Каменный уголь образован из древних растений, а они никогда бы не выросли без живительных лучей нашей единственной звезды. Тоже самое говорят и о нефти с газом. И даже футуристичные ветряки не стали бы вращаться, если бы не ветер, за который, как и за весь климат на Земле отвечает наше светило.

В погоне за всё более и более востребованными энергоресурсами, человечество уже изыскало множество путей. Но возможно всё, что нам надо – это перестать смотреть вниз в толщи земли, а обратить свой взгляд наверх – на наше Солнце.



Рассказать друзьям