Перечень основных свойств золота. Состав, свойства и области применения золота

💖 Нравится? Поделись с друзьями ссылкой

Золото – символ богатства и солнечного света, самый древний из металлов, известных человеку. Украшения из золота начали изготавливать задолго до того, как древние люди познакомились с более практичными бронзой и железом. Созданием этого металла тщетно занимались алхимики, и человечество пролило немало крови за сияющие манящим светом кусочки желтого металла. Но что он представляет собой по существу?

Общие сведения о золоте

Чистое золото представляет собой тяжелый металл, который в виде слитков обладает свойствами высокой пластичности и тягучести. Физические свойства золота позволяют создать проволоку протяженностью 2 км всего из одного грамма вещества. Применение золота весьма обширно за счет того, что этот металл хорошо проводит тепло, электричество, но при этом не окисляется и практически не вступает в реакции с другими веществами.

Молекулы золота распространяются в воздухе и воде, накапливаются в почве и в некоторых растениях в следовых количествах (в частности, в кукурузе). Этот металл редко образует минералы с другими химическими элементами, главным образом находясь в почве в виде самородков или золотого песка. Россыпи золота, имеющие промышленное значение, на данный момент обнаружены в 41 стране, а самые крупные месторождения золота расположены в ЮАР, Канаде и на территории стран СНГ.

Золотодобыча производится главным образом из россыпей методом амальгамации.

Для того, чтобы получить чистое золото из породы, необходимо сначала подвергнуть ее дроблению и обогащению, а затем обработать солевым раствором (обычно используются цианид натрия или цианид калия). После этого золото осаждают раствором цинка и впоследствии получают чистое золото методом электролиза.

Ранее золото имело огромное экономическое значение ввиду его платежеспособности и концепции золотого стандарта – т.е. мера ценности любого товара зависела от золота. Отказ от золотого стандарта стал важнейшим шагом для мировой экономики ввиду того, что, как уже упоминалось, золото – очень мягкий металл, который подвержен деформации и стиранию в ходе эксплуатации. На сегодняшний день золото является предметом инвестиций ввиду небольших запасов этого металла и широкого технического применения.

В промышленности золото используется чаще всего в качестве проводников и электрических контактов. Помимо этого, известно применение золота в ядерной промышленности, в строительстве (в качестве покрытия оконных стекол), в металлургии, косметологии и даже в пищевой промышленности. Кроме того, радиоактивные изотопы золота используются для лечения онкологических заболеваний. Но самое популярное использование золота, конечно, приходится на ювелирную промышленность.

Понятие о пробах золота

Проба золота – это показатель, который отражает количество чистого золота в образце. На данный момент используются метрическая и каратная системы обозначения проб. Метрическая система берет за основу расчет количества золота на 1000 единиц вещества, а каратная – на 24 единицы. Существовала также золотниковая система проб, которая в данный момент устарела. Она использовала систему измерения чистого вещества из расчета на 96 единиц.

Кажется, будто чистое золото непременно самое ценное и именно за него нужно бороться, выбирая ювелирное украшение. Однако, плотность золота 24 карата слишком мала, чтобы служить декоративным целям. В чистом виде этот металл слишком мягок, и его невозможно было бы носить – он моментально деформировался бы. Такие образцы используют в технических целях – для получения электродов, сырья для фармацевтической или иной промышленности, в качестве эталонных слитков и т.д.

Отличным показателем высокой пластичности золота является знаковый жест «пробы на зуб». В древности, когда золотые монеты отливали от самородков золота относительно высокой пробы, прикусывание монет позволяло отличить чистый металл от сплава с медью – на настоящей монете оставался след от зубов, тогда как сплавленные с медью монеты было практически невозможно повредить таким образом.

В ювелирных украшениях чаще всего используют золото 56 пробы по устаревшей системе, или в 14 карат по современной. Для этого делают сплавы с различными цветными металлами, в зависимости от выбора которых конечный сплав имеет различные твердость, плавкость, цвет, блеск и другие характеристики.

К примеру, белое золото получают путем добавления примесей никеля, цинка, палладия, серебра или меди в различных соотношениях. Розовый цвет золоту придает смесь из серебра, палладия и меди. Примеси меди и серебра создают эффектный красный оттенок. Кроме того, осветление и холодный цвет металлу придает родиевое покрытие, используемое также в целях повышения прочности изделия.

Плотность золота равна 19,32 г/см³. Это делает золото очень тяжелым металлом, что также нежелательно для его использования в декоративных целях в чистом виде. Однако такая высокая плотность золота заметно облегчает задачу по его добыче, т.к. уже при промывке оно отделяется от более легких металлов, породы и минералов. Удельный вес золота составляет приблизительно 197 г/моль. Химический состав золота – чистые молекулы металла, связанные кубической кристаллической решеткой.

Как определить подлинность золота?

Неудивительно, что такое ценное и полезное ископаемое, как золото, подвергается использованию в мошеннических схемах разного рода. Однако свойства золота в большинстве случаев позволяют отличить благородный металл от подделки несколькими простейшими манипуляциями. Однако, следует сразу оговориться, что речь пойдет об определении чистого золота среди, например, сплавов, так что этими способами можно будет определять разве что подлинность слитков. Процент золота в ювелирных украшениях выявить не получится.

Прежде всего, следует помнить, что элемент Au не обладает магнитной активностью. Поэтому при проверке магнитом чистое золото не должно к нему притягиваться. Если магнита нет под рукой, можно протестировать золото химическим взаимодействием. Выберите наименее заметный участок изделия и оставьте на нем небольшую каплю йода на несколько минут, затем сотрите. На чистом золоте останется темный след.

Можно проверить золото и уксусом. Погрузите часть металлического изделия в уксус на несколько минут. Если золото начнет темнеть, то это – сплав с другим металлом, т.к. чистое золото не реагирует с уксусной кислотой.

Для того, чтобы определить пробу золота, необходимо отправиться к ювелиру. Тест проводится различными методами, самым популярным из которых является использование золотых игл.

Проверка заключается в том, чтобы сравнить плотность золота образца (иглы) с тестируемым материалом. Если содержание золота в игле больше, то она не оставит следа на поверхности изделия, т.к. плотность золота невелика по сравнению со сплавами.

Кроме того, в ювелирных мастерских проводят анализ пробы золота и без всяких царапин. Существует аппаратная проверка пробы при помощи растворов и их последующего анализа в приборе, или же при помощи рентгеновских лучей, применение которых возможно лишь в относительно крупных лабораториях. Рентген необходим для того, чтобы убедиться в отсутствии сердцевины из другого металла в золотых слитках.

Найденные самородки и другие крупные образцы проверяют методом пробирного анализа. Для мелких предметов этот способ не подойдет, т.к. он требует определенных жертв – кусочек образца необходимо расплавить, а затем слить со свинцом и серебром. После этого производится расчет массы и объема, из которого и вычисляется доля чистого золота.

Современные мошенники делают сплавы золота и с инактивными примесями, так что такие методы обнаружения подделки работают скорее на старых образцах золота. Кроме того, домашние опыты могут повредить украшение, не дав достоверного результата, поэтому предпочтительнее при необходимости определить чистоту металла обращаться к профессионалам, которые быстро и безопасно смогут подтвердить подлинность образца.

В этой статье:

Прежде чем говорить о свойствах любого драгоценного металла, нужно понять и определить его химический состав, а также разобраться с физическими свойствами. Поэтому ответ на вопрос «из чего состоит золото» следует искать прежде всего на школьных уроках химии или в интернете, а уже потом можно судить о соответствующей цене уникального по свойствам металла. Ведь высокая стоимость этого вещества появилась не просто так.

Состав драгметалла в природе

Все дело в том, что причины и процессы появления золота на Земле неизвестны науке. Есть отдельные предположения о попадании частиц драгметалла вследствие действия метеоритов и ядерных реакций во время нейтронных взрывов, но это лишь гипотезы. Фактом остается то, что золота на Земле совсем немного, каждый день люди добывают такое количество железа, которое приравнивается ко всему добытому золоту за время существования цивилизации.

Золотые самородки

Поэтому у ученых и алхимиков возникал вопрос о структуре этого металла, а также интересовала . Если знать точную структуру, можно выдвинуть предположения о появлении золота, а уже потом попытаться провести эксперимент и получить золото в лабораторных условиях.

Итак, в природе этот элемент встречается в виде золотых частиц. По подсчетам ученых в литосфере содержится около 5% золота. А вот в ядре Земли по гипотезам его намного больше. Золото можно обнаружить в составе магматических пород, а также на местах разлома тектонических плит или в старых горных хребтах.

Такое месторасположение практически не объясняют геологи, а астрофизики считают это явление следствием наибольших метеоритных атак именно на определенные участки земли. Но, благодаря температурным перепадам, золото из более глубоких шаров выходит на поверхность. И тогда обнаружить его можно в составе железных руд.

В рудах золото присутствует вкраплениями или жилками размерами 0,1-1000 мкм. Редко можно встретить весом в несколько килограммов. А извлечь драгметалл можно из таких видов руд:

  • золотые руды, которые встречаются очень редко;
  • железные руды, в которых наиболее низкое в сравнении с остальными рудниками;
  • медные руды;
  • свинцово-цинковые руды;
  • урановые рудники.

Интересно то, что вместе с золотом можно найти примеси таких элементов, как:

  • висмут;
  • сурьма;
  • селен.

А вот серебро никогда не встречается рядом с залежами золота. Иногда залежи находят даже под обычной землей на разных материках.

Физические и химические возможности элемента

С точки зрения химиков, золото - это один из элементов таблицы Менделеева. Химическая формула состоит из сокращения Au от слова aurum. Вся суть заключается в том, что этот драгметалл состоит из изотопов одного вещества и формулы в привычном понимании просто нет. Атомная масса золота 196,9 г/ммоль. К группе благородных металлов его зачислили после проверки взаимодействия с другими элементами, а также с обычным кислородом.

Выяснилось, что золото абсолютно не реагирует ни на серу, ни на кислород, как и на большинство других элементов. Даже если и золото вступает в реакцию, это означает, что только внешний слой металла будет поврежден, но не все вещество.

Кроме того, золото имеет привлекательный внешний вид, а еще оно пластичное, что позволяет изготавливать из золота разные украшения и хорошо проводит ток. Даже минеральные кислоты не могут изменить внешний вид и состав золота. Благодаря этому определяют подлинность металла.

Свидетельствуют о том, что по составу - это уникальный элемент в таблице Менделеева. Чтоб посмотреть на частицы золота, которые входят в состав украшения, нужно выпарить изделие в царской водке. Именно таким образом проводится аффинирование, то есть процесс извлечения золота из примесей.


Физические характеристики золота

Из самого металла нельзя ничего извлечь, золото - это целостный элемент. А вот у производителей возникает вопрос о том, как в промышленных масштабах извлечь золото из руды и очистить его от примесей. Решение этого вопроса можно найти, используя такие процессы, как:

  • обогатительная флотация, гравитация;
  • выщелачивание;
  • сорбция;
  • цианирование;
  • амальгамирование.

Все эти процессы проводятся поэтапно и сейчас они механизированны. Еще несколько столетий назад добыча золота происходила вручную без малейшего намека на автоматизацию процесса. Это было возможно из-за еще одной особенности золота - его высокой плотности. Поэтому на смывах с рек золото оседало на самое дно, где его можно было разглядеть. Также следует помнить, что соединения золота с другими металлами или элементами неустойчивы, поэтому драгметалл можно извлечь химическим путем. Последние этапы заключаются в растворении получившегося золота в царской водке и последующем осаждении драгметалла.

Присутствие драгметалла в составе изделия обнаруживают с помощью образования окрашенных осадков и растворов. Для этого используют соединения золота с разными веществами, а также такие процессы, как электрофорез, хроматография, люминесценция. Чтоб определить количество золота в составе какого-то вещества используют методы титрирования, фотометрии, гравиметрии.

В само золото также иногда добавляют примеси. Делается это для того, чтоб удешевить изделие, а также придать ему необходимую форму. Все дело в том, что золото является мягким металлом. Это не критично при изготовлении слитков, которые за счет своей формы не сильно деформируются со временем. А вот золотые украшения вполне могут прогнуться под собственным весом или поменять дизайн в худшую сторону.

Поэтому для того чтоб серьги или цепь оставалась в неизменном виде, в состав добавляют другие металлы, которые называют лигатурой. Лигатура - это примесь к золоту, поэтому от ее свойств будет зависеть не только стоимость изделия, но еще и его характеристики. Например, от вида металла меняется оттенок украшения. Если золото в чистом виде имеет ярко-желтый цвет, то с добавлением меди изделие приобретет красный оттенок. Золото так и называется: красным, желтым, белым, розовым. В качестве лигатур чаще всего используют:

  • Медь. Она добавляет прочность составу украшения.
  • Серебро. Драгметалл приобретает благородный оттенок.
  • Платина - еще более дорогой металл, чем золото.
  • Никель. Повышает литейные качества изделия, но для изготовления украшений сплав с никелем не подходит.
  • Цинк понижает температуру плавления, но добавляет хрупкость сплаву.
  • Кадмий и палладий на практике редко добавляют в сплавы с золотом.

Такое золото с примесями других металлов в составе имеет пробу или каратность. Зная пробу изделия, можно определить содержания чистого золота в нем. Это несложно, поскольку сертифицированные и изготовленные по правилам золотые вещи должны иметь клеймо, на котором и будет указана проба. Составы проб определяются по ГОСТу. Все пропорции должны строго соблюдаться, ведь от этого зависит стоимость изделия.

По стандартам ГОСТ существует около 40 сплавов разных проб. Процентное содержание золота зависит от цели использования драгметалла. Разумеется, что для изготовления украшений берут высокопробное золото, которое выглядит презентабельно. А вот в промышленности можно применять и низкопробные сплавы, которые обладают необходимыми физическими свойствами.

Формулу золота никто не может разгадать по сей день, но многие восхищаются этим металлом и продолжают делать из него культ своей жизни. Но формула драгметалла, а значит и его истинный состав, до сих пор остается одним из вопросов, на который пока нет точного ответа у человечества.

Золото (лат. aurum), au, химический элемент 1 группы периодической системы Менделеева; атомный номер 79, атомная масса 196,9665; тяжёлый металл жёлтого цвета. Состоит из одного устойчивого изотопа 197 au.

Историческая справка. З. было первым металлом, известным человеку. Изделия из З. найдены в культурных слоях эпохи неолита (5-4-е тыс. до н. э.). В древних государствах - Египте, Месопотамии, Индии, Китае добыча З., изготовление украшений и др. предметов из него существовали за 3-2 тыс. до н. э. З. часто упоминается в Библии, «Илиаде», «Одиссее» и др. памятниках древней литературы. Алхимики называли З. «царём металлов» и обозначали его символом Солнца; открытие способов превращения неблагородных металлов в З. было главной целью алхимии.

Распространённость в природе. Среднее содержание З. в литосфере составляет 4,3 · 10 -7 % по массе. В магме и магматических породах З. рассеяно, но из горячих вод в земной коре образуются гидротермальные месторождения З., имеющие важное промышленное значение (кварцевые золотоносные жилы и др.). В рудах З. в основном находится в свободном (самородном) состоянии и лишь очень редко образует минералы с селеном, теллуром, сурьмой, висмутом. Пирит и др. сульфиды часто содержат примесь З., которое извлекают при переработке медных, полиметаллических и др. руд.

В биосфере З. мигрирует в комплексе с органическими соединениями и механическим путём в речных взвесях. 1 л морской и речной воды содержит около 4 · 10 -9 г З. На участках золоторудных месторождений подземные воды содержат З. приблизительно 10 -6 г/л. Оно мигрирует в почвах и оттуда попадает в растения; некоторые из них концентрируют З., например хвощи, кукуруза. Разрушение эндогенных месторождений З. приводит к образованию россыпей З., имеющих промышленное значение. З. добывается в 41 стране; его основные запасы сосредоточены в СССР, ЮАР и Канаде.

Физические и химические свойства. З. - мягкий, очень пластичный, тягучий металл (может быть проковано в листки толщиной до 8 · 10 -5 мм, протянуто в проволоку, 2 км которой весят 1 г ), хорошо проводит тепло и электричество, весьма стойко против химических воздействий. Кристаллическая решётка З. гранецентрированная кубическая, а = 4,704 a . Атомный радиус 1,44 a , ионный радиус au 1+ 1,37 a . Плотность (при 20°С) 19,32 г/см 3 , t пл 1064,43°С, t kип 2947°С; термический коэффициент линейного расширения 14,2 · 10 -6 (0-100°С); удельная теплопроводность 311,48 вт /(м · К) ; удельная теплоёмкость 132,3 дж /(кг · К) (при 0°-100°С); удельное электросопротивление 2,25 · 10 -8 ом (м (2,25 · 10 -6 ом (см ) (при 20°С); температурный коэффициент электросопротивления 0,00396 (0-100°С). Модуль упругости 79 · 103 Мн/м 2 (79 · 10 2 кгс/мм 2 ), для отожжённого З. предел прочности при растяжении 100-140 Мн/м 2 (10-14 кгс/мм 2 ), относительное удлинение 30-50%, сужение площади поперечного сечения 90%. После пластической деформации на холоду предел прочности повышается до 270-340 Мн/м 2 (27-34 кгс/мм 2 ) . Твёрдость по Бринеллю 180 Мн/м 2 (18 кгс/мм 2 ) (для З. отожжённого около 400 °С).

Конфигурация внешних электронов атома З. 5d 10 6s 1 . В соединениях З. имеет валентности 1 и 3 (известны комплексные соединения, в которых З. 2-валентно). С неметаллами (кроме галогенов) З. не взаимодействует. С галогенами З. образует галогениды, например 2au + 3cl 2 =2auc13. В смеси соляной и азотной кислот З. растворяется, образуя золотохлористоводородную кислоту h . В растворах цианида натрия nacn (или калия kcn) при одновременном доступе кислорода З. превращается в цианоаурат (i) натрия 2na . Эта реакция, открытая в 1843 П. Р. Багратионом, получила практическое применение только в конце 19 в. Для З. характерна лёгкая восстановимость его из соединений до металла и способность к комплексообразованию. Существование закиси З., т. е. оксида З. (i) au 2 o, сомнительно. Хлорид З. (i) aucl получается при нагревании хлорида З. (iii): auc1 3 = aucl + c1 2 .

Хлорид З. (iii) auc1 3 получается действием хлора на порошок или тонкие листочки З. при 200 °С. Красные иглы auc1 3 дают с водой коричнево-красный раствор комплексной кислоты: auc1 3 +Н 2 О=Н 2 .

При осаждении раствора auc1 3 едкой щёлочью выпадает амфотерная жёлто-коричневая гидроокись З.(iii) au (oh) 3 c преобладанием кислотных свойств; поэтому её называют золотой кислотой, а её соли - ауратами (iii). При нагревании гидроокись З. (iii) превращается в окись З. au 2 o 3 , которая выше 220° разлагается по реакции:

2au 2 o 3 = 4au + 3o 2 .

При восстановлении солей З. хлоридом олова (ii) 2auc1 3 + 3sncl 2 = 3sncl 4 + 2au

образуется весьма стойкий пурпуровый коллоидный раствор З. (кассиев пурпур); это используется в анализе для обнаружения З. Количественное определение З. основано на его осаждении из водных растворов восстановителями (feso 4 , h 2 so 3 , h 2 c 2 o 4 и др.) или на применении пробирного анализа.

Получение З. и его аффинаж. Из россыпных месторождений З. можно извлечь отмучиванием, основанным на большой разности плотностей З. и пустой породы. Этот способ, применявшийся уже в глубокой древности, сопряжён с большими потерями. Он уступил место амальгамации (известной уже в 1 в. до н. э. и применявшейся в Америке начиная с 16 в.) и цианированию, получившему широкое распространение в Америке, Африке и Австралии в 1890-х гг. В конце 19 - начале 20 вв. основным источником З. стали коренные месторождения. Золотоносную породу сначала подвергают дроблению и обогащению. Из полученного концентрата извлекают З. раствором цианида калия или натрия. Из раствора комплексного цианида осаждают З. цинком; при этом выпадают и примеси. Для очистки (аффинажа) З. электролизом (способ Э. Вольвилла, 1896) аноды, отлитые из нечистого З., подвешивают в ванне, содержащей солянокислый раствор auc1 3 , катодом служит лист чистого З. При прохождении тока примеси выпадают в осадок (анодный ил, шлам), а на катоде отлагается З. чистотой не менее 99,99%.

Применение . З. в условиях товарного производства выполняет функцию денег . В технике З. применяют в виде сплавов с др. металлами, что повышает прочность и твёрдость З. и позволяет экономить его. Содержание З. в сплавах, применяемых для изготовления ювелирных изделий, монет, медалей, полуфабрикатов зубопротезного производства и т.д., выражают пробой; обычно добавкой служит медь (т. н. лигатура). В сплаве с платиной З. используется в производстве химически стойкой аппаратуры, в сплаве с платиной и серебром - в электротехнике. Соединения З. используют в фотографии (тонирование).

С. А. Погодин.

З. в искусстве. З. применяется с древнейших времён в ювелирном искусстве (украшения, культовая и дворцовая утварь и т.д.), а также для золочения. Благодаря своей мягкости, ковкости, способности тянуться З. поддаётся особо тонкой обработке чеканкой, литьём, гравировкой. З. используют для создания разнообразных декоративных эффектов (от глади жёлтой полированной поверхности с плавными переливами световых бликов до сложных фактурных сопоставлений с богатой светотеневой игрой), а также для выполнения тончайшей филиграни. З., часто окрашенное примесями др. металлов в различные цвета, применяется в сочетании с драгоценными и поделочными камнями, жемчугом, эмалью, чернью.

В медицине препараты З. используют в виде взвеси в масле (отечественный препарат кризанил, зарубежный - миокризин) или водорастворимых препаратов (зарубежные - санкризин и солганал) для инъекций при лечении хронических ревматических артритов, эритематозной красной волчанки, часто в сочетании с гормональными и др. препаратами. Препараты З. нередко вызывают побочные явления (повышение температуры тела, раздражение кишечника, почек и др.). Противопоказания к применению препаратов З.: тяжёлые формы туберкулёза, сахарный диабет, заболевания сердечно-сосудистой системы, печени, почек, крови.

Радиоактивное З. (чаще 198 au) вводят в ткани в виде штифтов, гранул и т.п. - для гамма-терапии и в виде коллоидных растворов - для бета-терапии. Его применяют при лечении опухолей, обычно в сочетании с хирургическим и медикаментозным лечением, а также с диагностическими целями - в виде коллоидных растворов при исследовании ретикуло-эндотелиальной системы, печени, селезёнки и др. органов.

Лит.: Плаксин И. Н., Золото, в кн.: Краткая химическая энциклопедия, т. 2, М., 1966; Реми Г., Курс неорганической химии, пер. с нем., т. 2, М., 1966, с. 439-451; ullmanns enzykiop a die dertechnischen chemie, 3 aufl., bd 8, m u nch. - b., 1957, s. 253-307; Магакьян И. Г., Рудные месторождения, 2 изд., Ер., 1961; Русское золотое и серебряное дело 15-20 веков, М., 1967 (библ. с. 289-93); rosenberg М., geschichte der goldschmiedekunst auf technischer grundlage, fr./m., 1918.

Экономическое значение. З. в условиях товарного производства выполняет функцию всеобщего эквивалента. «Первая функция золота состоит в том, чтобы доставить товарному миру материал для выражения стоимости, т. е. для того, чтобы выразить стоимости товаров как одноименные величины, качественно одинаковые и количественно сравнимые» (Маркс К., в кн.: Маркс К. и Энгельс Ф., Соч., 2 изд., т. 23, с. 104). Выражая стоимость всех др. товаров, З. в качестве всеобщего эквивалента приобретает особую потребительную стоимость, становится деньгами. «Золото и серебро по природе своей не деньги, но деньги по своей природе - золото и серебро» (Маркс К., там же, т. 13, с. 137). Товарный мир выделил З. в качестве денег потому, что оно обладает наилучшими для денежного товара физическими и химическими свойствами: однородностью, делимостью, сохраняемостью, портативностью (большой стоимостью при небольших объёме и весе), легко поддаётся обработке. Значительное количество З. применяется для изготовления монет или в форме слитков хранится в качестве золотого запаса центральных банков (государства). З. широко используется для промышленного потребления (в радиоэлектронике, приборостроении и др. прогрессивных отраслях), а также как материал для изготовления ювелирных изделий.

Первоначально З. употреблялось исключительно для выделки украшений, затем оно стало служить средством сбережения и накопления богатств, а также обмена (сначала в форме слитков). В качестве денег З. использовалось ещё за 1500 лет до н. э. в Китае, Индии, Египте и государствах Месопотамии, а в Древней Греции - в 8-7 вв. до н. э. В Лидии, богатой месторождениями З., в 7 в. до н. э. началась чеканка первых в истории монет. Имя лидийского царя Креза (правил около 560-546 до н. э.) стало синонимом несметного богатства. На территории СССР (в Армении) монеты из З. Чеканились в 1 в. до н. э. Но в древности и в средние века З. не являлось основным валютным металлом. Наряду с ним функции денег выполняли медь и серебро.

Погоня за З., страсть к обогащению были причинами многочисленных колониальных и торговых войн, в эпоху Великих географических открытий толкали на поиски новых земель. Поток драгоценных металлов в Европу после открытия Америки явился одним из источников первоначального накопления капитала. До середины 16 в. из Нового Света в Европу ввозилось преимущественно З. (97-100% ввозимого металла), а со 2-й трети 16 в., после открытия богатейших месторождений серебра в Мексике и Перу - преимущественно серебро (85-99%). В России в начале 19 в. стали разрабатываться новые месторождения З. на Урале и в Сибири, и в течение трёх десятилетий страна занимала первое место в мире по его добыче. В середине 19 в. были открыты богатые месторождения З. в США (Калифорния) и Австралии, в 1880-х гг. - в Трансваале (Южная Африка). Развитие капитализма, расширение межконтинентальной торговли усилили спрос на денежные металлы, и, хотя добыча З. возросла, во всех странах наряду с З. в качестве денег ещё продолжало широко использоваться серебро. В конце 19 в. произошло резкое снижение стоимости серебра вследствие совершенствования способов его добычи из полиметаллических руд. Рост мировой добычи З. и особенно прилив его в Европу и США из Австралии и Африки ускорили вытеснение обесценившегося серебра и создали условия для перехода большинства стран к монометаллизму (золотому) в его классической форме золотомонетного стандарта. Первой к золотому монометаллизму перешла в конце 18 в. Великобритания. К начальник 20 в. золотая валюта утвердилась в большинстве стран мира.

Отражая отношения людей в условиях стихийного товарного производства, власть З. выступает на поверхности явлений как отношение вещей, кажется натуральным внутренним свойством З. и порождает золотой и денежный фетишизм. Страсть к накоплению золотых богатств растет безгранично, толкает на чудовищные преступления. Особенно возрастает власть З. при капитализме, когда товаром становится рабочая сила. Образование при капитализме мирового рынка расширило сферу обращения З. и сделало его мировыми деньгами.

В период общего кризиса капитализма подрывается золотой стандарт. Во внутреннем обращении капиталистических стран господствующими становятся бумажные деньги и неразменные на З. банкноты. Ограничиваются или вовсе запрещаются вывоз З. и его купля-продажа. В связи с этим З. перестаёт выполнять функции средства обращения и средства платежа, но, выступая идеально как мера стоимости, а также сохраняя значение средства образования сокровищ и мировых денег, остаётся базой денежных систем и главным средством окончательного урегулирования взаимных денежных требований и обязательств капиталистических стран. Размеры запасов З. - важный показатель устойчивости капиталистических валют и экономического потенциала отдельных стран. Купля-продажа З. для промышленного потребления, а также и для частной тезаврации (накопления) осуществляется на специальных рынках золота. Выпадение З. из свободного межгосударственного рыночного оборота вызвало сокращение его доли в валютной системе капиталистического мира и, прежде всего, в валютных резервах капиталистических стран (с 89% в 1913 до 71% в 1928, 69% в 1958 и 55% в 1969). Всё более значительная часть вновь добываемого З. поступает для тезаврации и промышленного использования (в современной химической промышленности, для ракетостроения, космической техники). Так, за 1960-70 частная тезаврация З. возросла в 3,3 раза, его промышленное и ювелирное использование почти в 2,3 раза, золотые запасы капиталистических стран сохранились практически на одном уровне (41 млрд. долл.). (О добыче З. в капиталистических странах см. в ст. Золотодобывающая промышленность . )

В условиях социалистической экономики З. также является всеобщим эквивалентом, выступая мерой стоимости и масштабом цен. С 1 января 1961 золотое содержание советского рубля установлено в 0,987412 г чистого З. Это же количество З. Положено в основу переводного рубля - международной социалистической валюты стран - членов СЭВ. На мировом социалистическом рынке З. выполняет функцию мировых денег.

Лит.: Михалевский Ф. И., Золото в период мировых войн, [М.], 1945; его же, Золото в системе капитализма после второй мировой войны, М., 1952; Борисов С. М., Золото в экономике современного капитализма, М., 1968.

December 15th, 2013

Золото… Желтый металл, простой химический элемент с атомным номером 79. Предмет вожделения людей во все времена, мерило ценности, символ богатства и власти. Кровавый металл, порождение дьявола. Сколько человеческих жизней было погублено ради обладания этим металлом!? И сколько еще будет погублено?

В отличие от железа или, например, от алюминия, золота на Земле очень мало. За всю свою историю человечество добыло золота столько, сколько оно добывает железа за один день. Но откуда же этот металл появился на Земле?

Считается, что Солнечная система образовалась из остатков взорвавшейся когда-то в глубокой древности сверхновой. В недрах той древней звезды происходил синтез химических элементов тяжелее водорода и гелия. Но в недрах звезд не могут синтезироваться элементы тяжелее железа, и стало быть, золото не могло образоваться в результате термоядерных реакций в звездах. Так, откуда же этот металл вообще появился во Вселенной?

Похоже, астрономы теперь могут ответить на этот вопрос. Золото не может рождаться в недрах звезд. Но оно может образоваться в результате грандиозных космических катастроф, которые ученые буднично называют гамма-всплесками (ГВ).

Астрономы пристально наблюдали за одним из таких гамма-всплесков. Данные наблюдений дают достаточно серьезные основания считать, что эта мощная вспышка гамма-излучения произведена столкновением двух нейтронных звезд – мертвых ядер звезд, погибших в сверхновом взрыве. Кроме того, уникальное свечение, сохранявшееся на месте ГВ в течение нескольких дней, указывает на то, что во время этой катастрофы образовалось значительное количество тяжелых элементов, в том числе – золото.

«По нашим оценкам, количество золота, образовавшегося и выброшенного в пространство во время слияния двух нейтронных звезд, может сотавить более 10 лунных масс»,– сказал ведущий автор исследования Эдо Бергер из Гарвард-Смитсоновского астрофизического центра (CfA) во время пресс-конференции CfA в Кембридже, штат Массачусетс.

Гамма-всплеск (ГВ) – это вспышка гамма-излучения от чрезвычайно энергичного взрыва. Большинство ГВ обнаруживаются в очень отдаленных областях Вселенной. Бергер и его коллеги изучали объект GRB 130603B, находящийся на расстоянии 3,9 миллиардов световых лет. Это один из самых близких ГВ из замеченных до настоящего времени.

ГВ бывают двух видов – длинные и короткие, в зависимости от того, сколько длится вспышка гамма-лучей. Длительность вспышки GRB 130603B, зафиксированной спутником НАСА «Свифт», составила менее двух десятых секунды.

Хотя само гамма-излучение исчезло быстро, GRB 130603B продолжал светить в инфракрасных лучах. Яркость и поведение этого света не соответствовали типичному послесвечению, которое возникает при бомбардировке ускоренными частицами окружающего вещества. Свечение GRB 130603B вело себя так, как будто оно исходит из распадающихся радиоактивных элементов. Вещество, богатое нейтронами, выброшенное при столкновении нейтронных звезд, может превратиться в тяжелые радиоактивные элементы. Радиоактивный распад таких элементов порождает инфракрасное излучение, характерное для GRB 130603B. Именно это и наблюдали астрономы.

По вычислениям группы, во время взрыва было выброшено вещества с массой около одной сотой солнечной. И часть этого вещества была золотой. Примерно оценив количество золота, образовавшегося во время этого ГВ, и число таких взрывов, произошедших за всю историю Вселенной, астрономы пришли к предположению, что все золото во Вселенной, в том числе и на Земле, возможно, было образовано во время таких гамма-всплесков.

Вот еще одна интересная, но ужасно спорная версия:

В процессе формирования Земли расплавленное железо спускалось вниз к её центру, чтобы составить её ядро, увлекая с собой большинство драгоценных металлов планеты, таких как золото и платина. Вообще, драгметаллов в ядре хватит на то, чтобы покрыть их слоем четырёхметровой толщины всю поверхность Земли.

Перемещение золота в ядро должно было лишить внешнюю часть Земли этого сокровища. Однако распространённость благородных металлов в силикатной мантии Земли превышает расчётные величины в десятки и тысячи раз. Уже обсуждалась идея о том, что это свалившееся на голову сверхизобилие имеет своей причиной катастрофический метеоритный ливень, который настиг Землю после образования её ядра. Вся масса метеоритного золота, таким образом, вошла в мантию обособленно и не пропала глубоко внутри.

Для проверки этой теории доктор Маттиас Виллболд и профессор Тим Эллиот из Бристольской изотопной группы Школы наук о Земле подвергли анализу собранные в Гренландии профессором Оксфордского университета Стивеном Мурбатом породы, возраст которых насчитывает около 4 миллиардов лет. Эти древние камни дают уникальную картину состава нашей планеты вскоре после формирования ядра, но до предполагаемой метеоритной бомбардировки.

Затем ученые начали исследовать содержание вольфрама-182 и в метеоритах, которые называют хондритами, – это один из главных строительных материалов твердой части Солнечной системы. На Земле нестабильный гафний-182 распадается cобразованием вольфрама-182. А вот в космосе из-за космических лучей этот процесс не происходит. В результате стало ясно, что образцы древних горных пород содержат на 13% больше вольфрама-182 по сравнению с более молодыми горными породами. Это дает геологам основание утверждать, что когда Земля уже имела твердую кору, на нее обрушилось около 1 миллиона триллионов (10 в 18-й степени) тонн астероидного и метеоритного вещества, которое имело более низкое содержаниевольфрама-182, но при этом гораздо большее, чем в земной коре, содержание тяжелых элементов, в частности золота.

Будучи весьма редким элементом (на килограмм породы приходится всего около 0,1 миллиграмма вольфрама), подобно золоту и другим драгоценным металлам он должен был войти в ядро в момент его формирования. Как и большинство других элементов, вольфрам подразделяется на несколько изотопов – атомов со сходными химическими свойствами, но слегка различающимися массами. По изотопам можно с уверенностью судить о происхождении вещества, а смешивание метеоритов с Землей должно было оставить характерные следы в составе её изотопов вольфрама.

Доктор Виллболд заметил в современной породе сокращение количества изотопа вольфрама-182 на 15 миллионных долей по сравнению с гренландской.

Это небольшое, но многозначительное изменение превосходно согласуется с тем, что и требовалось доказать – что избыток доступного золота на Земле является положительным побочным эффектом метеоритной бомбардировки.

Доктор Виллболд говорит: «Извлечение вольфрама из каменных образцов и анализ с необходимой точностью его изотопного состава были крайне сложной задачей, принимая во внимание небольшое количество имеющегося в камнях вольфрама. Фактически, мы стали первой в мире лабораторией, которая успешно выполнила измерения такого уровня».

Упавшие метеориты смешались с земной мантией в ходе гигантских конвекционных процессов. Задачей-максимум на будущее является выяснение продолжительности этого перемешивания. Впоследствии геологические процессы сформировали континенты и привели к концентрации драгоценных металлов (а также вольфрама) в залежах руды, которая добывается в наши дни.

Доктор Виллболд продолжает: «Результаты нашей работы показывают, что большая часть драгоценных металлов, на которых основывается наша экономика и многие ключевые производственные процессы, была занесена на нашу планету по счастливой случайности, когда Землю накрыло где-то 20 квинтиллионами тонн астероидного вещества».

Таким образом, мы обязаны своими золотыми запасами настоящему потоку ценных элементов, которые оказались на поверхности планеты благодаря массированной астероидной «бомбардировке». Потом в ходе развития Земли в течение последних миллиардов лет золото вступило в круговорот пород, появляясь на ее поверхности и вновь скрываясь в глубинах верхней мантии.

Но теперь ему путь к ядру закрыт, и большое количество этого золота просто обречено оказаться в наших руках.

Слияние нейтронных звезд

И еще мнение другого ученого:

Происхождение золота оставалось до конца невыясненным, поскольку, в отличие от более легких элементов, таких как углерод или железо, оно не может образовываться непосредственно внутри звезды, — признался один из исследователей центра Эдо Бергер.

Ученый пришел к этому выводу, наблюдая за гамма-всплесками — масштабными космическими выбросами радиоактивной энергии, вызванными столкновением двух нейтронных звезд. Гамма-всплеск был замечен космическим аппаратом НАСА Swift и длился всего двух десятых секунды. А после взрыва осталось свечение, которое постепенно исчезало. Свечение же при столкновении таких небесных тел свидетельствует о выбросе большого количества тяжелых элементов, утверждают специалисты. А доказательством того, что после взрыва образовались тяжёлые элементы, можно считать инфракрасный свет в их спектре.

Дело в том, что нейтронно-богатые вещества, выброшенные при коллапсе нейтронных звезд, могут генерировать элементы, претерпевающие радиоактивный распад, при этом испуская свечение преимущественно в инфракрасном диапазоне, — объяснял Бергер. — И мы полагаем, что при гамма-всплеске выбрасывается примерно одна сотая доля материала солнечной массы, в том числе золото. Причем, количество золота, произведенного и выброшенного во время слияния двух нейтронных звезд, может быть сравнимо с массой 10 Лун. А стоимость такого количества драгоценного металла равнялась бы 10 октильонам долларов — это 100 трлн в квадрате .

Для справки, октильон — это миллион септиллионов или миллион в седьмой степени; число, равное 1042 и записываемое в десятичной системе как единица с 42 нулями.

Также сегодня учеными установлен тот факт, что практически все золото (и прочие тяжелые элементы) на Земле — космического происхождения. Золото, оказывается, попало на Землю в результате астероидной бомбардировки, которая произошла в далекие времена после застывания коры нашей планеты.

Практически все тяжелые металлов «утонули» в мантии Земли на самом раннем этапе формирования нашей планеты, именно они образовали твердое металлическое ядро в центре Земли.

Алхимики XX века

Еще в 1940 году американские физики А. Шерр и К. Т. Бэйнбридж из Гарвардского университета начали облучать нейтронами соседние с золотом элементы – ртуть и платину. И вполне ожидаемо, облучив ртуть, получили изотопы золота с массовыми числами 198, 199 и 200. Их отличие от естественного природного Au-197 в том, что изотопы неустойчивы и, испуская бета-лучи, максимум за несколько дней опять превращаются в ртуть с массовыми числами 198,199 и200.

Но все равно это было здорово: впервые человек смог самостоятельно создавать нужные элементы. Вскоре стало понятно, как вообще можно получить настоящее, стабильное золото-197. Это можно сделать, используя только изотоп ртути-196. Этот изотоп достаточно редок – его содержание в обычной ртути с массовым числом 200 составляет около 0,15%. Его надо бомбардировать нейтронами, чтобы получить малоустойчивую ртуть-197, которая, захватив электрон, и превратится в стабильное золото.

Однако расчеты показали, что если взять 50 кг природной ртути, то в ней будет всего 74 грамма ртути-196. Для трансмутации в золото реактор может дать поток нейтронов 10 в 15-й степени нейтронов на кв. см в секунду. С учетом того, что в 74 г ртути-196 содержится около 2,7 на 10 в 23-й степени атомов, для полной трансмутации ртути в золото потребовалось бы четыре с половиной года. Это синтетические золото стоит бесконечно дороже золота из земли. Но это означало, что для образования золота в космосе тоже нужны гигантские потоки нейтронов. И взрыв двух нейтронных звезд как раз все объяснял.

И еще подробности про золото:

Немецкие ученые подсчитали, что для того, чтобы на Землю был занесен присутствующий сегодня объем драгметаллов, понадобились всего 160 металлических астероидов, диаметром около 20км каждый. Специалисты отмечают, что геологический анализ различных благородных металлов показывает, что все они появились на нашей планете примерно в одно и то же время, однако на самой Земле не было и нет условий для их естественного происхождения. Именно это натолкнуло специалистов на космическую теорию появления благородных металлов на планете.

Слово «gold», по мнению лингвистов, произошло от индо-европейского термина «желтый» как отражение наиболее заметной характеристики этого металла. Этот факт находит свое подтверждение в том, что произношение слова «gold» на разных языках похоже, например Gold (по-английски), Gold (по-немецки), Guld (по-датски), Gulden (по-голландски), Gull (по-норвежски), Kulta (по-фински).

Золото в земных недрах


В ядре нашей планеты содержится в 5 раз больше золота, чем во всех остальных породах, доступных для разработки, вместе взятых. Если бы все золото ядра Земли вылилось на поверхность, то покрыло бы всю планету слоем толщиной полметра. Интересно, что в каждом литре воды всех рек, морей и океанов растворено около 0,02 миллиграмма золота.

Определено, что за все время добычи благородного металла из недр было извлечено около 145 тысяч тонн (по данным других источников – около 200 тысяч тонн). Производство золота растет из года в год, но основной рост пришелся на конец 1970-х годов.

Чистота золота определяется различными путями. Carat (в США и Германии пишется «Karat») первоначально был единицей массы на основе семян рожкового дерева «carob tree» (созвучно со словом «карат»), используемого древними торговцами Среднего Востока. Карат сегодня в основном используется при измерении веса драгоценных камней (1 карат = 0,2 грамма). Чистоту золота также можно измерить в каратах. Эта традиция восходит к древним временам, когда карат на Ближнем Востоке стал мерилом чистоты золотых сплавов. Британский карат золота – неметрическая единица оценки содержания золота в сплавах, равная 1/24 массы сплава. Чистое золото соответствует 24 каратам. Чистота золота сегодня измеряется также и понятием химической чистоты, то есть тысячных долях чистого металла в массе сплава. Так, 18 карат – это 18/24 и в пересчете на тысячные доли соответствует 750-й пробе.

Добыча золота


В результате природного концентрирования примерно лишь 0,1% всего золота, содержащегося в земной коре, доступно, хотя бы теоретически, для добычи, однако благодаря тому, что золото встречается в самородном виде, ярко блестит и легко заметно, оно стало первым металлом, с которым познакомился человек. Но природные самородки редки, поэтому самый древний способ добычи редкого металла, основанный на большой плотности золота, – промывание золотоносных песков. «Добыча промывного золота требует только механических средств, а потому немудрено, что золото известно было даже дикарям и в самые древние исторические времена» (Д.И.Менделеев).

Но богатых золотых россыпей почти не осталось, и уже в начале XX века 90% всего золота добывали из руд. Сейчас многие золотые россыпи практически исчерпаны, поэтому добывают, в основном, рудное золото, добыча которого во многом механизирована, но производство остается трудным, так как часто находится глубоко под землей. В последние десятилетия постоянно росла доля более рентабельных открытых разработок. Месторождение экономически выгодно разрабатывать, если в тонне руды содержится всего 2-3г золота, а при содержании более 10 г/т оно считается богатым. Существенно, что затраты на поиск и разведку новых золотых месторождений составляют от 50 до 80% всех затрат на геологоразведочные работы.

Сейчас крупнейшим поставщиком золота на мировой рынок является Южная Африка, где шахты достигли уже 4-километровой глубины. В ЮАР находится самый большой в мире рудник Вааль-Рифс в Клексдорпе. ЮАР – единственное государство, где золото – главный продукт производства. Там его добывают на 36 крупных рудниках, на которых трудятся сотни тысяч человек.

В России добыча золота ведется из рудных и россыпных месторождений. О начале его добычи мнения исследователей расходятся. По-видимому, первое отечественное золото было добыто в 1704 году из Нерчинских руд вместе с серебром. В последующие десятилетия на Московском монетном дворе золото выделяли из серебра, которое содержало немного золота в виде примеси (около 0,4%). Так, в 1743-1744гг. «из золота, обретающегося в серебре, выплавленном на Нерчинских заводах», было изготовлено 2820 червонцев с изображением Елизаветы Петровны.

Первую в России золотую россыпь обнаружил весной 1724 года крестьянин Ерофей Марков в районе Екатеринбурга. Ее эксплуатация началась только в 1748 года. Добыча уральского золота медленно, но неуклонно расширялась. В начале XIX века были открыты новые месторождения золота в Сибири. Открытие (в 1840-е гг.) Енисейского месторождения вывело Россию на первое место в мире по добыче золота, но еще до этого местные охотники-эвенки делали из золотых самородков пули для охоты. В концу XIX века Россия добывала в год около 40т золота, из них 93% – россыпного. Всего же в России до 1917 год было добыто, по официальным данным, 2754т золота, но по оценкам специалистов – около 3000т, причем максимум пришелся на 1913 год (49т), когда золотой запас достиг 1684т.

С открытием богатых золотоносных районов в США (Калифорния, 1848г.; Колорадо, 1858г.; Невада, 1859г.), Австралии (1851г.), Южной Африке (1884г.), Россия утратила свое первенство в добыче золота, несмотря на то, что были введены в эксплуатацию новые месторождения, главным образом в Восточной Сибири.
Добыча золота велась в России полукустарным способом, разрабатывались преимущественно россыпные месторождения. Свыше половины золотых приисков находилось в руках иностранных монополий. В настоящее время доля добычи из россыпей постепенно снижается, составляя к 2007 году немного более 50 тонн. Менее 100 тонн добывается из рудных месторождений. Окончательная переработка золота ведется на аффинажных заводах, ведущим из которых является Красноярский завод цветных металлов. На его долю приходится аффинаж (очистка от примесей, получение металла пробы 99,99%) около 50% добываемого золота и большая часть платины и палладия, добываемых в России.

. А например вы знаете Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Истинная, эмпирическая, или брутто-формула: Au

Молекулярная масса: 196,967

Зо́лото - элемент 11 группы (по устаревшей классификации - побочной подгруппы первой группы), шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 79. Обозначается символом Au (лат. Aurum). Простое вещество золото - благородный металл жёлтого цвета.

История

Происхождение названия

Праславянское «*zolto» («золото») родственно лит. geltonas «жёлтый», латыш. zelts «золото»; с другим вокализмом: готск. gulþ, нем. gold, англ. gold; далее санскр. हिरण्य (híraṇya IAST), авест. zaranya, осет. zærījnæ «золото», также санскр. हरि (hari IAST) «жёлтый, золотистый, зеленоватый», от праиндоевропейского корня *ǵʰel- «жёлтый, зелёный, яркий». Отсюда же названия цветов: «жёлтый», «зелёный». Латинское aurum означает «жёлтое» и родственно с «Авророй» (Aurora) - утренней зарёй.

Физические свойства

Чистое золото - мягкий металл жёлтого цвета. Красноватый оттенок некоторым изделиям из золота, например, монетам, придают примеси других металлов, в частности, меди. В тонких плёнках золото просвечивает зелёным. Золото обладает высокой теплопроводностью и низким электрическим сопротивлением. Золото - очень тяжёлый металл: плотность чистого золота равна 19,32 г/см³ (шар из чистого золота диаметром 46,237 мм имеет массу 1 кг). Среди металлов по плотности занимает седьмое место после осмия, иридия, платины, рения, нептуния и плутония. Сопоставимую с золотом плотность имеет вольфрам (19,25). Высокая плотность золота облегчает его добычу, отчего даже простые технологические процессы - например, промывка на шлюзах, - могут обеспечить высокую степень извлечения золота из промываемой породы. Золото - очень мягкий металл: твёрдость по шкале Мооса ~2,5, по Бринеллю 220-250 МПа (сравнима с твёрдостью ногтя). Золото также высокопластично: оно может быть проковано в листки толщиной до ~0,1 мкм (100 нм) (сусальное золото); при такой толщине золото полупрозрачно и в отражённом свете имеет жёлтый цвет, в проходящем - окрашено в дополнительный к жёлтому синевато-зеленоватый. Золото может быть вытянуто в проволоку с линейной плотностью до 2 мг/м. Температура плавления золота 1064,18 °C (1337,33 К), кипит при 2856 °C (3129 К). Плотность жидкого золота меньше, чем твёрдого, и составляет 17 г/см 3 при температуре плавления. Жидкое золото довольно летучее, оно активно испаряется задолго до температуры кипения. Линейный коэффициент теплового расширения - 14,2·10-6 К−1 (при 25 °C). Теплопроводность - 320 Вт/м·К, удельная теплоёмкость - 129 Дж/(кг·К), удельное электрическое сопротивление - 0,023 Ом·мм 2 /м. Электроотрицательность по Полингу - 2,4. Энергия сродства к электрону равна 2,8 эВ; атомный радиус 0,144 нм, ионные радиусы: Аu + 0,151 нм (координационное число 6), Аu 3+ 0,082 нм (4), 0,099 нм (6).Причиной того, что цвет золота отличается от цвета большинства металлов, является малость энергетической щели между полузаполненной 6s-орбиталью и заполненными 5d-орбиталями. В результате золото поглощает фотоны в синей, коротковолновой части видимого спектра, начиная с примерно 500 нм, но отражает более длинноволновые фотоны с меньшей энергией, которые не способны перевести 5d-электрон на вакансию в 6s-орбитали (см. рис.). Поэтому золото при освещении белым светом выглядит жёлтым. Сужение щели между 6s- и 5d-уровнями вызвано релятивистскими эффектами - в сильном кулоновском поле вблизи ядра золота орбитальные электроны движутся со скоростями, составляющими заметную часть скорости света, причём на s-электронах, у которых максимум плотности орбитали находится в центре атома, эффект релятивистского сжатия орбитали сказывается сильнее, чем на p-, d-, f-электронах, чья плотность электронного облака в окрестностях ядра стремится к нулю. Кроме того, релятивистское сжатие s-орбиталей увеличивает экранировку ядра и ослабление притяжения к ядру электронов с более высокими орбитальными моментами (непрямой релятивистский эффект). В целом, 6s-уровень снижается, а 5d-уровни растут.

Химические свойства

Золото - один из самых инертных металлов, стоящее в ряду напряжений правее всех других металлов. При нормальных условиях оно не взаимодействует с большинством и не образует оксидов, поэтому его относят к благородным металлам, в отличие от обычных металлов, разрушающихся под действием и . В XIV веке была открыта способность царской водки растворять золото, что опровергло мнение о его химической инертности. Существуют соединения золота со степенью окисления −1, называемые ауридами. Например, CsAu (аурид цезия), Na 3 Au (аурид натрия). Из чистых кислот золото растворяется только в концентрированной селеновой кислоте при 200 °C:
2Au + 6H 2 SeO 4 → Au 2 (SeO 4) 3 + 3H 2 SeO 3 + 3H 2 O
Концентрированная HClO 4 реагирует с золотом и при комнатной температуре, при этом образуя различные нестойкие оксиды хлора. Жёлтый раствор растворимого в воде перхлората золота (III).
2Au + 8HClO 4 → Cl 2 + 2Au(ClO 4) 3 + 2O 2 + 4H 2 O
Реакция обусловлена сильной окислительной способностью Cl 2 O 7 .
Золото сравнительно легко реагирует с кислородом и другими окислителями при участии комплексобразователей. Так, в водных растворах цианидов при доступе кислорода золото растворяется, образуя цианоаураты:
4Au + 8CN - + 2H 2 O + O 2 → 4 - + 4OH -
Цианоаураты легко восстанавливаются до чистого золота:
2Na + Zn → Na 2 + 2Au
В случае реакции с хлором возможность комплексообразования также значительно облегчает ход реакции: если с сухим хлором золото реагирует при ~200 °C с образованием хлорида золота(III), то в концентрированном водном растворе соляной и азотной кислот («царская водка») золото растворяется с образованием хлораурат-иона уже при комнатной температуре:
2Au + 3Cl 2 + 2Cl - → 2 -
Кроме того, золото растворяется в хлорной воде. Золото легко реагирует с жидким бромом и его растворами в воде и органических , образуя трибромид AuBr 3 .
С фтором золото реагирует в интервале температур 300−400 °C, при более низких реакция не идёт, а при более высоких фториды золота разлагаются. Золото также растворяется в ртути, образуя легкоплавкий сплав (амальгаму), содержащий интерметаллиды золото-ртуть. Известны золотоорганические соединения - например, этилдибромид золота или ауротиоглюкоза.

Физиологическое воздействие

Некоторые соединения золота токсичны, накапливаются в почках, печени, селезёнке и гипоталамусе, что может привести к органическим заболеваниям и дерматитам, стоматитам, тромбоцитопении. Органические соединения золота (препараты кризанол и ауранофин) применяются в медицине при лечении аутоиммунных заболеваний, в частности, ревматоидного артрита.

Происхождение

Зарядовое число 79 золота делает его одним из высших по количеству протонов элементов, которые встречаются в природе. Ранее предполагалось, что золото образовывалось при нуклеосинтезе сверхновых звёзд, однако по новой теории предполагается, что золото и другие элементы тяжелее железа образовались в результате разрушения нейтронных звёзд. Спутниковые спектрометры в состоянии обнаружить образующееся золото лишь косвенно, «у нас нет прямых спектроскопических доказательств, что такие элементы действительно образуются». По этой теории в результате взрыва нейтронной звезды содержащая металлы пыль (в том числе тяжёлые металлы, например, золото) выбрасывается в космическое пространство, в котором оно впоследствии конденсируется, так произошло в Солнечной системе и на Земле. Поскольку сразу после своего возникновения Земля была в расплавленном состоянии, почти всё золото в настоящее время на Земле находится в ядре. Большинство золота, которое сегодня присутствует в земной коре и мантии, было доставлено на Землю астероидами во время поздней тяжёлой бомбардировки. На Земле золото находится в рудах в породах, образованных начиная с докембрийского периода.

Геохимия

Содержание золота в земной коре очень низкое - 4,3·10 -10 % по массе (0,5-5 мг/т), но месторождения и участки, резко обогащённые металлом, весьма многочисленны. Золото содержится и в воде . Один литр и морской, и речной воды содержит менее 5·10 -9 граммов Au, что примерно соответствует 5 килограммам золота в 1 кубическом километре воды. Золоторудные месторождения возникают преимущественно в районах развития гранитоидов, небольшое их количество ассоциирует с основными и ультраосновными породами. Золото образует промышленные концентрации в постмагматических, главным образом гидротермальных, месторождениях. В экзогенных условиях золото является очень устойчивым элементом и легко накапливается в россыпях. Однако субмикроскопическое золото, входящее в состав сульфидов, при окислении последних приобретает способность мигрировать в зоне окисления. В результате золото иногда накапливается в зоне вторичного сульфидного обогащения, но максимальные его концентрации связаны с накоплением в зоне окисления, где оно ассоциирует с гидроокислами железа и марганца. Миграция золота в зоне окисления сульфидных месторождений происходит в виде бромистого и йодистого соединений в ионной форме. Некоторыми учёными допускается растворение и перенос золота сульфатом окиси железа или в виде суспензионной взвеси. В природе известны 15 золотосодержащих минералов: самородное золото с примесями серебра, меди и др., электрум Au и 25 - 45 % Ag; порпесит AuPd; медистое золото, бисмутоаурит (Au, Bi); родистое золото, иридистое золото, платинистое золото. Встречается также вместе с осмистым иридием (ауросмирид) Остальные минералы представлены теллуридами золота: калаверит AuTe 2 , креннерит AuTe 2 , сильванит AuAgTe 4 , петцит Ag 3 AuTe 2 , мутманит (Ag, Au)Te, монтбрейит Au 2 Te 3 , нагиагит Pb 5 AuSbTe 3 S 6 . Для золота характерна самородная форма. Среди других его форм стоит отметить электрум, сплав золота с серебром, который обладает зеленоватым оттенком и относительно легко разрушается при переносе водой. В горных породах золото обычно рассеяно на атомарном уровне. В месторождениях оно зачастую заключено в сульфиды и арсениды. Различаются вторичные месторождения золота - россыпи, в которые оно попадает в результате разрушения первичных рудных месторождений, и месторождения с комплексными рудами - в которых золото извлекается в качестве попутного компонента.

Добыча

Люди добывают золото с незапамятных времён. С золотом человечество столкнулось уже в V тыс. до н. э. в эпоху неолита благодаря его распространению в самородном состоянии. По предположению археологов, начало системной добычи было положено на Ближнем Востоке, откуда золотые украшения поставлялись, в частности, в Египет. Именно в Египте в гробнице королевы Зер и одной из королев Пу-аби Ур в Шумерской цивилизации были найдены первые золотые украшения, датируемые III тыс. до н. э. В России до елизаветинских времён золото не добывалось. Оно ввозилось из-за границы в обмен на товары и взималось в виде ввозных пошлин. Первое открытие запасов золота было сделано в 1732 году в Архангельской губернии, где вблизи одной деревни была обнаружена золотая жила. Её начали разрабатывать в 1745 году. Рудник с перерывами действовал до 1794 года и дал всего около 65 кг золота. Началом золотодобычи в России считают 21 мая (1 июня) 1745 г., когда Ерофей Марков, нашедший золото на Урале, объявил о своем открытии в Канцелярии Главного правления заводов в Екатеринбурге.
За всю историю человечеством добыто около 161 тысячи тонн золота, рыночная стоимость которого 8-9 триллионов долларов (оценка на 2011 год). Эти запасы распределены следующим образом (оценка на 2003 год):

  • государственные ЦБ и международные финансовые организации - около 30 тыс. тонн;
  • в ювелирных изделиях - 79 тыс. тонн;
  • изделия электронной промышленности и стоматологии - 17 тыс. тонн;
  • инвестиционные накопления - 24 тыс. тонн.
В России существует 37 золотодобывающих компаний. Лидером добычи золота в России является компания Полюс Золото, на которую приходится около 23 % рынка. Около 95 % золота в России добывается в 15 регионах (Амурская область, Республика Бурятия, Забайкальский край, Иркутская область, Камчатский край, Красноярский край, Магаданская область, Республика Саха (Якутия), Свердловская область, Республика Тыва, Хабаровский край, Республика Хакасия, Челябинская область, Чукотский автономный округ). Еще в 10 регионах добыча золота меньше тонны и нестабильная. Большая часть золота добывается из коренных месторождений, но развита также россыпная золотодобыча. Наибольшее количество золота добывается в Чукотском автономном округе, Красноярском крае и Амурской области.
В России, среди месторождений золота большую роль играют россыпи, и по добыче россыпного золота Россия занимает 1 место в мире. Большая его часть добывается в 7 регионах: Амурская область, Забайкальский край, Иркутская область, Магаданская область, Республика Саха (Якутия), Хабаровский край, Чукотский автономный округ.
В 2011 году в мире было добыто 2809,5 т золота, из них в России - 185,3 т (6,6 % мировой добычи).
В 2012 г. в России было добыто 226 тонн золота, на 15 тонн (на 7 %) больше, чем в 2011 г.
В 2013 г. в России было добыто 248,8 тонны золота, это на 22.8 тонны (на 9 %) больше, чем в 2012 г. Россия заняла третье место по объёму добытого золота с показателем в 248,8 тонны. Первое место занял Китай, где объём добычи золота составил 403 тонны. Австралия заняла второе место и добыла 268,1 тонны золота.
В 2014 г. в России было добыто 272 тонны золота, это на 23,2 тонны (на 9%) больше, чем в 2013 г. Россия заняла второе место по объёму добычи золота. Первое место в списке занял Китай, где объём добычи драгоценного металла увеличился в годовом выражении на 6 % в сравнении с 2013 г. и составил 465,7 тонны. Третье место занимает Австралия с добычей золота в 269,7 тонны, что на 1% выше показателя 2013 года.
Объём добычи золота в мире в 2014 году увеличился на 2% - до 3,109 тысячи тонн золота. При этом общемировое предложение на рынке практически не изменилось и составило 4,273 тысячи тонн. Производство первичного золота выросло на 2% - до 3,109 тысячи тонн, переработка вторичного золота снизилась на 11,1% - до 1,122 тысячи тонн. Спрос на золото в мире сократился на 18,7% - до 4,041 тысячи тонн.

Получение

Для получения золота используются его основные физические и химические свойства: присутствие в природе в самородном состоянии, способность реагировать лишь с немногими веществами (ртуть, цианиды). С развитием современных технологий более популярными становятся химические способы. В 1947 году американские физики Ингрем, Гесс и Гайдн проводили эксперимент по измерению эффективного сечения поглощения нейтронов ядрами ртути. В качестве побочного эффекта эксперимента было получено около 35 мкг золота. Таким образом, была осуществлена многовековая мечта алхимиков - трансмутация ртути в золото. Однако экономического значения такое производство золота не имеет, так как обходится во много раз дороже добычи золота из самых бедных руд.

Применение

Имеющееся в настоящее время в мире золото распределено так: около 10 % - в промышленных изделиях, остальное делится приблизительно поровну между централизованными запасами (в основном, в виде стандартных слитков химически чистого золота), собственностью частных лиц в виде слитков и ювелирными изделиями.

Запасы

В России

Запасы золота в государственном резерве России в декабре 2008 г. составили 495,9 тонн (2,2 % от всех государств мира). Доля золота в общем объёме золотовалютных резервов России в марте 2006 составила 3,8 %. По состоянию на начало 2011 года Россия занимает 8 место в мире по объёму золота, находящегося в государственном резерве. В августе 2013 года Россия увеличила золотой запас до 1015 т. В 2014 и 2016 годах Россия продолжила наращивать запасы драгоценного метала, которые на середину 2016 составили 1444,5 т.

Система проб

Во всех странах количество золота в сплавах контролируется государством. В России общепринятыми считаются пять проб золотых ювелирных сплавов: золото 375 пробы, 500, 585, 750, 958.

  • 375 проба. Основные компоненты - серебро и медь, золота - 38 %. Отрицательное свойство - тускнеет на воздухе (в основном из-за образования сульфида серебра Ag 2 S). Золото 375 пробы имеет цветовую гамму от жёлтого до красного.
  • 500 проба. Основные компоненты - серебро и медь, золота - 50,5 %. Отрицательные свойства - низкая литейность, зависимость цвета от содержания серебра.
  • 585 проба. Основные компоненты - серебро, медь, палладий, никель, золота - 59 %. Проба достаточно высока, это обусловлено многочисленными положительными качествами сплава: твёрдость, прочность, устойчивость на воздухе. Широко применяется для изготовления ювелирных украшений.
  • 750 проба. Основные компоненты - серебро, платина, медь, палладий, никель, золота - 75,5 %. Положительные свойства: подверженность полировке, твёрдость, прочность, хорошо обрабатывается. Цветовая гамма - от зелёного через ярко-жёлтый до розового и красного. Используется в ювелирном искусстве, особенно для филигранных работ.
  • 958 проба. Содержит до 96,3 % чистого золота. Редко используется, так как сплав этой пробы является весьма мягким материалом, который не держит полировку и характеризуется ненасыщенностью цвета.
  • 999 проба. Чистое золото.


Рассказать друзьям