Проблема создания искусственного интеллекта. Философские аспекты проблемы искусственного интеллекта (возможность существования, безопасность, полезность)

💖 Нравится? Поделись с друзьями ссылкой

НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УКРАИНЫ

«КИЕВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ»

«ПРОБЛЕМА СОЗДАНИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА»

КИЕВ – 2009


Вступление

1. Базовые положения

2. Методики и подходы построения систем ИИ

3. Проблемы создания ИИ

4. Реализация систем ИИ

Заключение


Вступление

В качестве самостоятельного научного направления искусственный интеллект (ИИ) существует уже более четверти века. Мнение общества, относительно специалистов данной области, постепенно менялось от скепсиса до уважения, и понимания перспектив данной области в будущем. В передовых странах, таких как США и Япония, работы в области интеллектуальных систем поддерживаются на всех уровнях – от рядовых граждан, до правительственных органов. Существует вполне обоснованное мнение, что именно исследования в области ИИ будут определять характер нынешнего информационного общества, которое уже фактически пришло на смену индустриальной эпохи, достигшей своей высшей точки расцвета в прошлом веке.

Начиная с 80-х годов прошлого века, произошло становление ИИ как особой научной дисциплины, сформировались её концептуальные модели, накопились специфические методы и приёмы, частично устоялись фундаментальные парадигмы. У специалистов старшего поколения, стоявших у истоков новой области исследований, складывается убеждение, что период бурного, хаотического развития кончился, и теперь наступает эра академических и целенаправленных исследований, рассчитанных на длительный период.


1. Базовые положения

Слово интеллект (intelligence) происходит от латинского intellectus – ум, рассудок, разум. Соответственно искусственный интеллект (artificial intelligence) – ИИ обычно используется как свойство автоматических систем брать на себя отдельные функции интеллектуального труда человека, например, выбирать и принимать оптимальные решения на основе ранее полученного опыта и рационального анализа внешних воздействий или событий.

Интеллектом обычно называют способность мозга решать поставленные (интеллектуальные) задачи путём приобретения, запоминания и целенаправленного преобразования знаний в процессе обучения и адаптации их (знаний) к разнообразным обстоятельствам. В этом определении под термином «знания» подразумевается не только информация, которая поступает в мозг человека через органы чувств. Информация подобного рода конечно важна, но недостаточна для полноценной интеллектуальной деятельности. Всё дело в том, что окружающие нас объекты обладают свойством не только воздействовать на органы чувств, но и находиться во взаимодействии друг с другом. Для того чтобы осуществлять в окружающей среде интеллектуальную деятельность, или как минимум просто существовать, человеку необходимо иметь систему знаний, модель этого мира. В этой информационной модели окружающей среды реальные объекты, их свойства и взаимоотношения между ними не только отображаются и запоминаются, но и могут мозгом человека (мысленно) «целенаправленно преобразовываться». При этом важен тот момент, что формирование модели внешней среды происходит в процессе обучения, на опыте и адаптации к разнообразным обстоятельствам.

Под алгоритмом понимают точную, предписанную последовательность действий системы для решения любой поставленной задачи из некоторого данного класса задач.

Термин «алгоритм» происходит от имени узбекского математика Аль Хо Резми, который еще в 9 веке предложил к использованию простейшие арифметические алгоритмы. В математике и кибернетике класс задач определенного типа считается решенным, если для её решения найден соответствующий алгоритм. На самом деле, нахождение алгоритмов является естественной целью человека при решении разнообразных классов задач. Поиск алгоритма для задач некоторого типа связано со сложными рассуждениями, требующими немалой изобретательности и высокой квалификации. Считается, что подобного рода деятельность требует участия интеллекта человека. Задачи, связанные с поиском алгоритма решения класса задач определенного типа, обычно называют интеллектуальными задачами.

Что же относительно задач, алгоритмы, решения которых уже установлены, то, как отмечает известный учёный в области ИИ М. Минский, – «излишне приписывать им (ИИ) такое мистическое свойство, как интеллектуальность». После того, как алгоритм решения задачи найден, процесс решения задачи становится таким, что его могут в равной степени выполнить как человек, так и вычислительная машина (должным образом запрограммированная), не имеющая ни малейшего представления о сущности самой задачи. Требуется только, чтобы «лицо» (человек или ИИ), решающее поставленную задачу, было способно выполнять те элементарные операции, из которых складывается процесс решения, и, кроме того, чтобы оно («лицо») педантично и аккуратно руководствовалось предложенным алгоритмом. Человек, так же как и ИИ, действует в таких случаях, как говориться, чисто машинально и может успешно решать любую задачу рассматриваемого класса.

Представляется совершенно естественным исключить из класса интеллектуальных такие задачи, для которых существуют стандартные методы решения. Например, такими задачами могут быть чисто вычислительные задачи: решение системы линейных алгебраических уравнений, численное интегрирование дифференциальных уравнений и т. п. Для решения подобного рода задач имеются стандартные алгоритмы, представляющие собой определенную последовательность элементарных операций, которая может быть легко реализована в виде программы для вычислительной машины. В противоположность этому для широкого класса интеллектуальных задач, таких, как распознавание образов, игра в шахматы, доказательство теорем и т. п., – формальное разбиение процесса поиска решения на отдельные элементарные шаги часто оказывается весьма затруднительным, даже если само их решение теоретически несложно.

Т.е. в некотором роде можно перефразировать определение интеллекта, назвав его универсальным сверхалгоритмом, который способен создавать алгоритмы решения самых разнообразных, но в тоже время конкретно поставленных задач.

Стоит отметить, что профессия программиста, исходя из приведенного выше, по-сути является одной из самых интеллектуальных, поскольку продуктом деятельности программиста являются программы – алгоритмы в чистом виде. Поэтому, создание даже определенных элементов ИИ по-идее должно значительно повысить производительность его труда.

Деятельность мозга, направленную на решение интеллектуальных задач, называют мышлением, или интеллектуальной деятельностью. Интеллект и мышление связаны с решением таких задач, как доказательство теорем, логический анализ, распознавание ситуаций, планирование поведения, игры, также управление в условиях неопределенности. Характерными чертами интеллекта, проявляющимися в процессе решения задач, являются способность к обучению, обобщению, накоплению опыта (знаний и навыков) и адаптации к изменяющимся условиям в процессе решения задач. Благодаря этим качествам мозг может решать разнообразные задачи, а также легко перестраиваться с решения одной задачи на другую. Таким образом, мозг, наделенный интеллектом, является универсальным средством решения широкого спектра задач (в том числе и неформализованных) для которых нет стандартных, заранее известных методов решения.

Надо учитывать, что существуют и другие, чисто поведенческие (функциональные) определения. Так, согласно А. Н. Колмогорову, любая материальная система, с которой можно достаточно долго обсуждать проблемы науки, литературы или искусства, обладает интеллектом.

Другим примером поведенческой трактовки интеллекта может служить известное определение А. Тьюринга. Например, в разных комнатах находится люди и машина. Они не могут видеть друг друга, но имеют возможность общения (обмениваться сообщениями). Если в процессе диалога между участниками людям не удается установить, что один из участников – машина, то такую машину можно считать обладающей интеллектом. Интересен план имитации мышления, предложенный А. Тьюрингом. «Пытаясь имитировать интеллект взрослого человека – пишет Тьюринг – мы вынуждены много размышлять о том процессе, в результате которого человеческий мозг достиг своего настоящего состояния… Почему бы нам вместо того, чтобы пытаться создать программу, имитирующую интеллект взрослого человека, не попытаться создать программу, которая имитировала бы интеллект ребенка? Ведь если интеллект ребенка получает соответствующее воспитание, он становится интеллектом взрослого человека… Наш расчет состоит в том, что устройство, ему подобное, может быть легко запрограммировано… Таким образом, мы расчленим нашу проблему на две части: на задачу построения «программы-ребенка» и задачу «воспитания» этой программы». Следует отметить, что именно этот путь используют практически все современные системы ИИ. Ведь понятно, что практически невозможно вложить все знания в систему ИИ. Более того, только на этом пути проявятся перечисленные выше признаки интеллектуальной деятельности (накопление опыта, адаптация и т. п.).


2. Методики и подходы построения систем ИИ

Существуют различные подходы к построению систем ИИ – логический подход, структурный, эволюционный, имитационный. Это разделение не является историческим, когда одно мнение постепенно сменялось другим, и различные подходы и методики существуют параллельно и сегодня. Поскольку по-настоящему полноценных систем искусственного интеллекта в настоящее время нет, то нельзя и утверждать, что какой-то подход является правильным, а какой-то – нет.

Для начала рассмотрим логический подход. Человек занимается отнюдь не только логическими измышлениями. Это высказывание конечно верно, но именно способность к логическому мышлению очень сильно отличает человека от животных. Основой для данного логического подхода служит Булевая алгебра. Каждый программист знаком с нею и с её использованием, хотя бы на примере логического оператора IF (если). Свое дальнейшее развитие Булевая алгебра получила в виде исчисления предикатов – в котором она расширена за счёт введения предметных символов, отношений между ними, кванторов существования и всеобщности.

Практически каждая система ИИ, построенная на логическом принципе, представляет собой машину доказательства теорем. При этом исходные данные хранятся в базе данных в виде аксиом (правила логического вывода как отношения между ними). Каждая такая машина имеет блок генерации цели, и система вывода пытается доказать данную цель как теорему. Если цель доказана, то трассировка примененных правил позволяет получить цепочку действий, необходимых для реализации поставленной цели. Мощность такой системы определяется возможностями генератора целей и машины доказательства теорем. Можно утверждать, что выражений алгебры не хватит для полноценной реализации ИИ, но стоит вспомнить, что основой всех существующих ЭВМ является бит – единица информации (или значение ячейки памяти), которая может принимать значения только логического 0 и 1. Было бы логично предположить, что всё, что возможно реализовать на ЭВМ, можно было бы реализовать и в виде логики предикатов. Хотя здесь ничего не упоминается о том, сколько на это уйдёт времени. Добиться большей выразительности логическому подходу позволяет такое сравнительно новое направление, как нечёткая логика. Её особенностью является то, что правдивость высказывания может принимать кроме значений да/нет (1/0) ещё и промежуточные значения – «не знаю» (0.5), «скорее да, чем нет» (0.75) и «скорее нет, чем да» (0.25). Такой подход больше похож на мышление человека, поскольку человек не часто отвечает только «да» или «нет».

Для большинства логических методов характерна большая трудоёмкость, поскольку во время поиска доказательства возможен полный перебор вариантов. Данный подход требует эффективной реализации вычислительного процесса, и удовлетворительные результаты работы обычно гарантируются только при сравнительно небольшом размере базы данных.

Под структурным подходом подразумеваются попытки построения ИИ путём моделирования структуры человеческого мозга. Одной из первых таких попыток был перцептрон Ф. Розенблатта. Основной моделируемой структурной единицей в перцептронах (как и в большинстве других вариантов моделирования мозга) является нейрон. Позднее возникли и другие модели, известные под общим названием «нейронные сети» (НС). Модели эти различаются по строению отдельных нейронов, по топологии связей между ними и по алгоритмам обучения. Среди наиболее известных вариаций НС можно назвать НС с обратным распространением ошибки, сети Хопфилда и стохастические нейронные сети.

Нейронные сети наиболее успешно применяются в задачах распознавания образов, в том числе сильно зачумленных (нечётких). Также имеются примеры успешного применения НС для построения собственно систем ИИ.

Для моделей, построенных на основе строения человеческого мозга характерна не слишком большая выразительность, оприделённое распараллеливание алгоритмов и, благодаря последнему, высокая производительность параллельно реализованных НС. Для таких сетей характерно одно свойство, которое делает из очень схожими с человеческим мозгом – нейронные сети работают даже при условии недостаточной информации об окружающей среде, т.е. как и человек, они поставленный вопрос могут отвечать не только «да» и «нет» но и «не знаю точно, но скорее нет», «не знаю точно, но скорее да».

Довольно большое распространение получил эволюционный подход. При построении систем ИИ по такому подходу, основное внимание уделяется построению начальной модели и правилам, по которым она (модель) может изменяться (эволюционировать). Модель может быть составлена по самым различным методам, это могут быть и НС и набор логических правил и любая другая модель. После этого мы запускаем ИИ, и он, на основании проверки моделей, отбирает самые лучшие из них, на основании которых по самым различным правилам генерируются новые модели, из которых опять выбираются самые лучшие и т. д.

Эволюционных моделей, как таковых, не существует, есть только эволюционные алгоритмы обучения, но модели, полученные при эволюционном подходе, имеют некоторые характерные особенности, что позволяет выделить их в отдельный класс. Такими особенностями являются перенесение основного внимания разработчика с построения модели на алгоритм её модификации и то, что полученные модели практически не сопутствуют извлечению новых знаний о среде, окружающей систему ИИ, то есть она (система) становится «вещью в себе».

Широко используется для построения систем ИИ также имитационный подход. Данный подход является классическим для кибернетики с одним из её базовых понятий – «чёрным ящиком» (ЧЯ). Чёрный ящик – это устройство, программный модуль или набор данных, информация о внутренней структуре и содержании которого отсутствуют, но известны спецификации входных и выходных данных. Объект, поведение которого имитируется, как раз и представляет собой такой «черный ящик». Не важно, что у него внутри и как он функционирует, главное, чтобы наша модель в аналогичных ситуациях вела себя точно так же. Таким образом моделируется другое свойство человека – способность копировать то, что делают другие, не вдаваясь в подробности, зачем это нужно. Зачастую эта способность экономит человеку массу времени, особенно в начале его жизни. К недостаткам имитационного подхода можно отнести низкую информационную способность большинства моделей, построенных с его помощью.

Отдельно стоит отметить, что на практике четкой границы между разными подходами нет. Часто встречаются смешанные системы ИИ, где часть работы выполняется по одной методике, а часть – по другой.

3. Проблемы создания ИИ

Анализ проблемы искусственного интеллекта открывает роль таких философских познавательных орудий, как категории, специфическая семиотическая система, логические структуры, ранее накопленное знание. Всё это обнаруживаются не посредством исследования физиологических или психологических механизмов познавательного процесса, но выявляется в знании, в его языковом выражении. Орудия познания, формирующиеся, в конечном счёте на основе практической деятельности, необходимы для любой системы, выполняющей функции абстрактного мышления, независимо от её конкретного материального субстрата и структуры. Поэтому, чтобы создать систему, выполняющую функции абстрактного мышления (т. е. в конечном счёте, формирующую адекватные схемы внешних действий в существенно меняющихся средах) необходимо наделить такую систему этими орудиями. Развитие систем ИИ за последние время как раз идёт по этому пути. Степень продвижения в данном направлении в отношении каждого из указанных познавательных орудий разная, но в целом пока, увы, незначительна.

В наибольшей мере системы ИИ используют формально-логические структуры, что обусловлено их неспецифичностью для мышления и, в сущности, алгоритмическим характером. Это дает возможность относительно легкой их технической реализации. Но даже здесь кибернетике предстоит пройти большой путь. В системах искусственного интеллекта ещё слабо используются модальная, императивная, вопросная и иные логики, которые функционируют в человеческом интеллекте, и не менее необходимы для успешных познавательных процессов, чем давно освоенные логикой, а затем и кибернетикой формы выводов. Повышение «интеллектуального» уровня технических систем, безусловно, связано не только с расширением применяемых логических средств, но и с более интенсивным их использованием – проверка информации на непротиворечивость, конструирования планов вычислений и т. п.

Сложнее обстоит дело с семиотическими системами, без которых интеллект невозможен в принципе. Языки, используемые в ЭВМ, ещё далеки от семиотических структур, которыми оперирует мышление. Прежде всего, для решения ряда задач, необходимо последовательное приближение семиотических систем, которыми наделяется ЭВМ, к естественному языку, точнее, к использованию его ограниченных фрагментов. В этом плане предпринимаются попытки наделить входные языки ЭВМ универсалиями языка, например, полисемией (которая элиминируется при обработке в лингвистическом процессоре). Уже разработаны проблемно-ориентированные фрагменты естественных языков, достаточные для решения системой ряда практических задач. Наиболее важным итогом такой работы является создание семантических языков (и их формализация), в которых слова-символы имеют определенную интерпретацию.

Многие универсалии естественных языков, необходимые для выполнения ими познавательных функций, в языках ИИ пока реализованы слабо (например, открытость) или используются ограниченно (например, полисемия). Все чаще воплощение в семиотических системах универсалий естественного языка, обусловленных его познавательной функцией, выступает одной из важнейших линий совершенствования систем ИИ, особенно тех, в которых проблемная область заранее чётко не определена.

Сегодня системы искусственного интеллекта способны осуществлять перевод с одномерных языков на многомерные. В частности, они могут строить диаграммы, схемы, чертежи, графы, чертить на экране кривые и т. п. ЭВМ производят и обратный перевод (описывают графики и тому подобное с помощью символов). Такого рода перевод является существенным элементом интеллектуальной деятельности. Правда современные системы ИИ пока не способны к непосредственному (без перевода на символический язык) использованию изображений или воспринимаемых сцен для «интеллектуальных» действий. Поиск путей глобального, а не локального, оперирования информацией составляет одну из важнейших и задач теории искусственного интеллекта.

Воплощение в информационные массивы и программы систем ИИ аналогов категорий находится пока в начальной стадии. Например, в категории входят понятия «целое», «часть», «общее», «единичное». Они используются в ряде систем представления знаний, в частности в качестве «базовых отношений», в той мере, в какой это необходимо для тех или иных конкретных предметных или проблемных областей, с которыми взаимодействуют системы. В формализованном понятийном аппарате некоторых систем представления знаний предприняты отдельные попытки выражения некоторых моментов содержания и других категорий (например, «причина» и «следствие»). Однако ряд категорий (например, «сущность» и «явление») в языках систем представления знаний отсутствует. В целом, данная проблема разработчиками систем ИИ в полной мере ещё не осмыслена, и предстоит ещё большая работа философов, логиков и кибернетиков по внедрению аналогов категорий в системы представления знаний, и другие компоненты интеллектуальных систем.

Современные системы ИИ почти не имитируют сложную иерархическую структуру образа, что не позволяет им перестраивать проблемные ситуации, комбинировать локальные части сетей знаний в блоки, перестраивать эти блоки и т. п. Не является совершенным и взаимодействие вновь поступающей информации с совокупным знанием, фиксированным в системах. В семантических сетях и фреймах, использующихся при представлении знаний, пока недостаточно используются методы, благодаря которым интеллект человека легко пополняется новой информацией, находит нужные данные, перестраивает свою систему знаний и т. п.

Ещё в меньшей мере современные системы ИИ способны активно воздействовать на внешнюю среду, без чего не может; осуществляться самообучение и вообще совершенствование «интеллектуальной» деятельности.

Таким образом, хотя определенные шаги к воплощению гносеологических характеристик мышления в современных системах искусственного интеллекта сделаны, но в целом эти системы ещё далеко не владеют комплексом гносеологических орудий, которыми располагает человек и которые необходимы для выполнения совокупности функций абстрактного мышления. Чем больше характеристики систем искусственного интеллекта будут приближены к гносеологическим характеристикам мышления человека, тем ближе будет их «интеллект» к интеллекту человека, точнее, тем выше будет их способность к комбинированию знаковых конструкций, воспринимаемых и интерпретируемых человеком в качестве решения задач и вообще воплощения мыслей.

Поэтому возникает сложный вопрос. При анализе познавательного процесса гносеология абстрагируется от психофизиологических механизмов, посредством которых реализуется сам процесс. Но из этого не следует, что для построения систем искусственного интеллекта эти механизмы не имеют значения. Не исключено, что механизмы, необходимые для воплощения неотъемлемых характеристик интеллектуальной системы, не могут быть реализованы в цифровых машинах или даже в любой технической системе, включающей в себя только компоненты неорганической природы. Также не исключено, что хотя мы и можем познать все гносеологические закономерности, обеспечивающие выполнение человеком его познавательной функции, но их совокупность реализуема лишь в системе, субстратно тождественной человеку.

Подобный взгляд обосновывается X. Дрейфусом. «Телесная организация человека – пишет он – позволяет ему выполнять... функции, для которых нет машинных программ – таковые не только ещё не созданы, но даже не существуют в проекте... Эти функции включаются в общую способность человека к приобретению телесных умений и навыков. Благодаря этой фундаментальной способности наделенный телом субъект может существовать в окружающем его мире, не пытаясь решить невыполнимую задачу формализации всего и вся».

Подчеркивание значения «телесной организации» для понимания особенностей психических процессов, в частности возможности восприятия, заслуживает отдельного внимания. Качественные различия в способности конкретных систем отражать мир тесно связаны с их структурой, которая хотя и обладает относительной самостоятельностью, но не может преодолеть некоторых рамок, заданных субстратом. В процессе биологической эволюции совершенствование свойства отражения происходило на основе усложнения нервной системы, т. е. субстрата отражения. Не исключено, что различие субстратов ЭВМ и человека может обусловить фундаментальные различия в их способности к отражению, что ряд функций человеческого интеллекта в принципе недоступен машинам.

В философской литературе утверждается, что допущение возможности выполнения технической системой интеллектуальных функций человека означает сведение высшего (биологического и социального) к низшему (к системам из неорганических компонентов) и, следовательно, противоречит материалистической диалектике. Но в этом рассуждении не учитывается, что пути усложнения материи однозначно не однозначны, и не исключено, что общество имеет возможность создать из неорганических компонентов (абстрактно говоря, минуя химическую форму движения) системы не менее сложные и не менее способные к отражению, чем биологические. Созданные таким образом системы являлись бы компонентами общества, социальной формой движения. Вопрос о возможности передачи интеллектуальных функций техническим системам, и в частности о возможности наделения их рассмотренными в работе гносеологическими орудиями, не может быть решен только исходя из философских соображений. Он должен быть подвергнут анализу на базе конкретных научных исследований. X. Дрейфус подчеркивает, что ЭВМ оперирует информацией, которая не имеет значения, смысла. Для ЭВМ необходим перебор огромного числа вариантов. Телесная организация человека, его организма позволяет отличать значимое от незначимого для жизнедеятельности и вести поиск только в сфере первого. Для «не телесной» ЭВМ, утверждает Дрейфус, это недоступно. Конечно, конкретный тип организации тела позволяет человеку ограничивать пространство возможного поиска. Это происходит уже на уровне анализаторной системы. Совсем иначе обстоит дело с ЭВМ. Когда в кибернетике ставится общая задача, например распознания образов, то эта задача переводится с чувственно-наглядного уровня на абстрактный. Тем самым снимаются ограничения, не осознаваемые человеком, но содержащиеся в его «теле», в структуре органов чувств и организма в целом. Они игнорируются ЭВМ. Поэтому пространство поиска резко увеличивается. Это значит, что к «интеллекту» ЭВМ предъявляются более высокие требования (поиска в более обширном пространстве), чем к интеллекту человека, к которому приток информации ограничен физиологической структурой его тела.

Обладающие психикой системы отличаются от ЭВМ прежде всего тем, что им присущи биологические потребности, обусловленные их материальным, биохимическим субстратом. Отражение внешнего мира происходит сквозь призму этих потребностей, в чём и выражается активность психической системы. ЭВМ не имеет потребностей, органически связанных с ее субстратом, для нее как таковая информация незначима, безразлична. Значимость, генетически заданная человеку, имеет два типа последствий. Первый – круг поиска сокращается, и, тем самым, облегчается решение задачи. Второй – нестираемые из памяти фундаментальные потребности организма обусловливают односторонность психической системы. Дрейфус пишет в связи с этим: «Если бы у нас на Земле очутился марсианин, ему, наверное, пришлось бы действовать в абсолютно незнакомой обстановке; задача сортировки релевантного и нерелевантного, существенного и несущественного, которая бы перед ним возникла, оказалась бы для него столь же неразрешимой, как и для цифровой машины, если, конечно, он не сумеет принять в расчет никаких человеческих устремлений». С этим можно не согласится. Если предложенный «марсианин» имеет иную биологию, чем человек, то он имеет и иной фундаментальный слой неотъемлемых потребностей, и принять ему «человеческие устремления» значительно труднее, чем ЭВМ, которая может быть запрограммирована на любую цель.

Живое существо в принципе не может быть по отношению к этому фундаментальному слою перепрограммировано, хотя для некоторых целей оно может быть запрограммировано вновь, посредством дрессировки. В этом смысле потенциальные интеллектуальные возможности машины шире подобных возможностей животных. У человека же над фундаментальным слоем биологических потребностей надстраиваются социальные потребности, и информация для него не только биологически, но и социально значима. Человек универсален и с точки зрения потребностей, и с точки зрения возможностей их удовлетворения. Однако эта универсальность особо присуща ему как социальному существу, производящему средства целесообразной деятельности, в том числе и системы искусственного интеллекта. Следовательно, телесная организация не только даёт дополнительные возможности, но и создает дополнительные трудности. Поэтому интеллекту человека важно иметь на вооружении системы, свободные от его собственных телесных или иных потребностей. Конечно, от таких систем неразумно требовать, чтобы они самостоятельно распознавали образы, классифицировали их по признакам, по которым это делает человек. Цели для них необходимо задавать в явной форме.

Следует отметить, что технические системы могут иметь аналог телесной организации. Развитая кибернетическая система обладает рецепторными и эффекторными придатками. Начало развитию таких систем положили интегральные промышленные роботы, в которых ЭВМ в основном выполняет функцию памяти. В роботах «третьего поколения» ЭВМ выполняет и «интеллектуальные» функции. Их взаимодействие с миром призвано совершенствовать их «интеллект». Такого рода роботы имеют «телесную организацию», конструкция их рецепторов и эффекторов содержит определенные ограничения, сокращающие пространство, в котором, образно говоря, могла бы совершать поиск цифровая машина. Тем не менее, совершенствование систем искусственного интеллекта на базе цифровых машин может иметь границы, из-за которых переход к решению интеллектуальных задач более высокого порядка, требующих учёта глобального характера переработки информации и ряда других гносеологических характеристик мышления, невозможен на дискретных машинах при сколь угодно совершенной программе. Техническая, а не только биологическая, эволюция отражающих систем оказывается связанной с изменением материального субстрата и конструкции этих систем. Такая эволюция, т. е. аппаратное усовершенствование систем искусственного интеллекта, например, через более интенсивное использование аналоговых компонентов, гибридных систем, голографии и ряда других идей, будет иметь место. При этом не исключается использование физических процессов, протекающих в мозгу, и таких, которые психика в качестве своих механизмов не использует. Наряду с этим ещё далеко не исчерпаны возможности совершенствования систем ИИ путём использования в функционировании цифровых машин гносеологических характеристик мышления, о которых речь шла выше.

В последнее время при анализе проблем, связанных с ИИ, часто применяют математический аппарат нечётких множеств, идея и реализация которого принадлежит американскому математику Л.Заде. Суть подхода состоит в отказе от принципа детерминизма. Пожалуй, наиболее поразительным свойством человеческого интеллекта является способность принимать правильные решения в обстановке неполной и нечёткой информации. Построение моделей, приближенных е рассуждениям человека, и использование их в компьютерных системах будущих поколений представляет сегодня одну из важнейших проблем науки. Смещение центра исследований нечётких систем в сторону практических приложений привело к выявлению целого ряда проблем, таких, как новые архитектуры компьютеров для нечётких вычислений, элементная база нечётких компьютеров и контроллеров, инструментальные средства разработки, инженерные методы расчёта и разработки нечётких систем управления и многое другое. Математическая теория нечётких множеств, предложенная Л.Заде около тридцати лет назад, позволяет описывать нечёткие понятия и знания, оперировать этими знаниями и делать нечёткие выводы. Основанные на этой теории методы построения компьютерных нечетких систем существенно расширяют области применения компьютеров. Нечёткое управление является одной из самых активных и результативных областей исследований применения теории нечётких множеств. Нечёткое управление оказывается особенно полезным, когда технологические процессы являются слишком сложными для анализа с помощью общепринятых количественных методов, или когда доступные источники информации интерпретируются неточно или неопределенно. Экспериментально показано, что нечёткое управление дает лучшие результаты, по сравнению с получаемыми, при общепринятых алгоритмах управления. Нечеткая логика, на которой основано нечеткое управление, ближе к человеческому мышлению и естественным языкам, чем традиционные логические системы.

4. Реализация систем ИИ

Ещё в далёком 1954 году американский исследователь А.Ньюэлл решил написать программу для игры в шахматы. Идеей он поделился с аналитиками корпорации RAND Corporation, и которые предложили Ньюэллу свою помощь. В качестве теоретической основы программы было решено использовать метод, предложенный К. Шенноном, основателем теории информации. Точная формализация метода была выполнена А. Тьюрингом. Он же и смоделировал его вручную. К работе была привлечена группа голландских психологов под руководством А. Де Гроота, изучавших стили игры выдающихся шахматистов. Через два года совместной работы этим коллективом был создан язык программирования ИПЛ1 –первый символьный язык обработки списков. Вскоре была написана первая программа, которую можно отнести к достижениям в области искусственного интеллекта. Это была программа «Логик-Теоретик» (1956 г.), предназначенная для автоматического доказательства теорем в исчислении высказываний. Собственно программа для игры в шахматы, NSS, была завершена в 1957 г. В основе её лежали так называемые эвристики – правила, которые позволяют сделать выбор при отсутствии точных теоретических оснований – и описания целей. Управляющий алгоритм пытался уменьшить различия между оценками текущей ситуации и оценками цели или одной из подцелей.

В 1956 году в США собрались основатели кибернетики с целью обсудить возможности реализации проекта «Искусственный интеллект», как они его тогда назвали. В числе участников конференции были Д. Маккарти, М. Минский, К. Шеннон, А. Тьюринг и др. К ИИ первоначально просто отнесли свойства машин брать на себя отдельные функции человека, например, такие как перевод с одного языка на другой, распознавание объектов, принятие оптимальных решений и пр. В СССР направление «Искусственный интеллект» (ИИ) возникло с опозданием на целых 10 лет и пришло на смену кибернетическому и бионическому буму первой половины 60-х годов. Поначалу оптимистам казалось, что произойдет революция и машина начнет думать как человек. Ничего подобного не произошло. Стало ясно, что никакого мышления, аналогичного человеческому, сходу построить не получится. Поэтому акценты сместились в сторону создания искусственного интеллекта – т.е. машинным решением «трудных» задач, которые человек решает, а машина пока нет. Таким образом, первоначально ИИ не претендовал на прямое моделирование мышления, а был просто решением с помощью машины трудноформализуемых «человеческих» задач.

С самого начала предполагалось, что эти решения позволят сформулировать обобщения и выработать специфические методы ИИ, ведущие, в конечном счете, к машинному мышлению. Представители возникшего направления справедливо полагали, что к конструктивному определению и моделированию мышления полезно идти от специфики задач к методам их решения, вводя «интеллект» как механизм, необходимый для решения.

В конечном итоге оказалось, что к традиционным задачам ИИ стали относить довольно много задач. Например, это понимание машиной естественного языка, т.е. вопрос-ответные системы и доступ к базам данных на естественном языке, перевод с одного языка на другой, анализ изображений объёмных (3-d) сцен, доказательство теорем, игры, базы данных, базы знаний и др.

Теперь вкратце рассмотрим наиболее активно развиваемые подходы и области применения ИИ – в порядке убывания их популярности. Надо отметить, что меньшая популярность нередко связана не столько с потенциалом технологии, сколько с отдаленностью перспектив её прикладной реализации (например, крайне высокий потенциал киберзаводов пока не вызывает серьезного интереса из-за наличия множества нерешенных задач по их управлению).

Нейронные сети

Это направление стабильно держится на первом месте. Продолжается совершенствование алгоритмов обучения и классификации в масштабе реального времени, обработки естественных языков, распознавания изображений, речи, сигналов, а также создание моделей интеллектуального интерфейса, подстраивающегося под пользователя. Среди основных прикладных задач, решаемых с помощью нейронных сетей – финансовое прогнозирование, раскопка данных, диагностика систем, контроль за деятельностью сетей, шифрование данных. В последние годы идёт усиленный поиск эффективных методов синхронизации работы нейронных сетей на параллельных устройствах.

Эволюционные вычисления

На развитие сферы эволюционных вычислений (ЭВ) значительное влияние оказали прежде всего инвестиции в нанотехнологии. ЭВ затрагивают практические проблемы самосборки, самоконфигурирования и самовосстановления систем, состоящих из множества одновременно функционирующих узлов. При этом удаётся применять научные достижения из области цифровых автоматов. Другой аспект ЭВ – использование для решения повседневных задач автономных агентов в качестве персональных секретарей, управляющих личными счетами, ассистентов, отбирающих нужные сведения в сетях с помощью поисковых алгоритмов третьего поколения, планировщиков работ, личных учителей, виртуальных продавцов и т. д. Сюда же относится робототехника и все связанные с ней области. Основные направления развития – выработка стандартов, открытых архитектур, интеллектуальных оболочек, языков сценариев/запросов, методологий эффективного взаимодействия программ и людей. Модели автономного поведения предполагается активно внедрять во всевозможные бытовые устройства, способные убирать помещения, заказывать и готовить пищу, водить автомобили и т. п. Отдельно стоит отметить социальные аспекты – неизвестно как общество будет на практике относиться к таким сообществам интеллектуальных программ.

Нечеткая логика

Системы нечеткой логики активнее всего будут применяться преимущественно в гибридных управляющих системах.

Обработка изображений

Продолжится разработка способов представления и анализа изображений (сжатие, кодирование при передаче с использованием различных протоколов, обработка биометрических образов, снимков со спутников), независимых от устройств воспроизведения, оптимизации цветового представления на экране и при выводе на печать, распределенных методов получения изображений. Дальнейшие развитие получат средства поиска, индексирования и анализа смысла изображений, согласования содержимого справочных каталогов при автоматической каталогизации, организации защиты от копирования, а также машинное зрение, алгоритмы распознавания и классификации образов.

Экспертные системы

Спрос на экспертные системы (ЭС) остаётся на достаточно высоком уровне. Наибольшее внимание сегодня уделяется системам принятия решений в масштабе времени, близком к реальному, средствам хранения, извлечения, анализа и моделирования знаний, системам динамического планирования.

Интеллектуальные приложения

Рост числа интеллектуальных приложений, способных быстро находить оптимальные решения комбинаторных проблем (возникающих, например, в транспортных задачах), связан с производственным и промышленным ростом в развитых странах.

Распределенные вычисления

Распространение компьютерных сетей и создание высокопроизводительных кластеров вызвали интерес к вопросам распределенных вычислений – балансировке ресурсов, оптимальной загрузке процессоров, самоконфигурированию устройств на максимальную эффективность, отслеживанию элементов, требующих обновления, выявлению несоответствий между объектами сети, диагностированию корректной работы программ, моделированию подобных систем.

Операционные системы реального времени

Появление автономных робототехнических устройств повышает требования к операционным системам реального времени (ОС РВ) – организации процессов самонастройки, планирования обслуживающих операций, использования средств ИИ для принятия решений в условиях дефицита времени.

Интеллектуальная инженерия

Особую заинтересованность в ИИ проявляют в последние годы компании, занимающиеся организацией процессов разработки крупных программных систем (программной инженерией). Методы ИИ все чаще используются для анализа исходных текстов и понимания их смысла, управления требованиями, выработкой спецификаций, проектирования, кодогенерации, верификации, тестирования, оценки качества, выявления возможности повторного использования, решения задач на параллельных системах. Программная инженерия постепенно превращается в так называемую интеллектуальную инженерию, рассматривающую более общие проблемы представления и обработки знаний (пока основные усилия в интеллектуальной инженерии сосредоточены на способах превращения информации в знания).

Самоорганизующиеся СУБД

Самоорганизующиеся СУБД будут способны гибко подстраиваться под профиль конкретной задачи и не потребуют администрирования.

Автоматический анализ естественных языков

Автоматический анализ естественных языков (лексический, морфологический, терминологический, выявление незнакомых слов, распознавание национальных языков, перевод, коррекция ошибок, эффективное использование словарей).

Высокопроизводительный OLAP-анализ

Высокопроизводительный OLAP-анализ и раскопка данных, способы визуального задания запросов.

Интеллектуальные медицинские системы

Медицинские системы, консультирующие врачей в экстренных ситуациях, роботы-манипуляторы для выполнения точных действий в ходе хирургических операций.

Киберзаводы

Создание полностью автоматизированных киберзаводов, гибкие экономные производства, быстрое прототипирование, планирование работ, синхронизация цепочек снабжения, авторизации финансовых транзакций путем анализа профилей пользователей.

Прикладные методы

Небольшое число конференций посвящено выработке прикладных методов, направленных на решение конкретных задач промышленности в области финансов, медицины и математики.

Традиционно высок интерес к ИИ в среде разработчиков игр и развлекательных программ (это отдельная тема). Среди новых направлений их исследований – моделирование социального поведения, общения, человеческих эмоций, творчества.


Заключение

Однозначного ответа, что же такое «искусственный интеллект» на данный момент не существует. Каждый автор имеет своё мнение на этот счёт. Некоторые считают, что ИИ может быть создан на основе одной из методик перечисленных выше, другие считают, что создание ИИ невозможно именно на текущем этапе развития человечества, третьи – вообще в принципе отрицают возможность создания ИИ.

Особенность ИИ в том, что это не сложная и дорогая технология, вроде атомной энергии. Это программный продукт, который легко тиражировать (копировать). Если учить ИИ тому, что человечество считаем полезным, то затем, теоретически, ИИ сможет развиваться по экспоненте, потому что для каждого нового поколения ИИ не требуется тратить время на изучение того, что уже знают предыдущие поколения (старые версии ИИ).

Но, если позволить «разумной» машине принимать самостоятельные решения, то невозможно знать заранее, что это будут за решения, и нет уверенности, что эти решения устроят человека. Поэтому машина, снова таки теоретически, сможет осуществить свою волю в соответствии со «своими» суждениями, даже если вы этого не желаете.

Ну а что будет на самом деле – покажет будущее.


Список использованных источников

1. М. Тим Джонс. «Программирование искусственного интеллекта в приложениях» – М.: ДМК Пресс, 2004 – 312 с.: ил.

2. Лекторский В.А. «Теория познания (гносеология, эпистемология)» – «Вопросы философии», 1999, №8

3. Лефевр В.А. «От психофизики к моделированию души.» – «Вопросы философии», 1990, №7, с. 25-31.

4. Карл, Левитин, Поспелов, Хорошевский. «Будущее искусственного интеллекта.» – М.: Наука, 1991.

5. Сотник С. Л., «Основы проектирования систем искусственного интеллекта» –1998.

6. Шамис А.Л. «Поведение, восприятие, мышление: проблемы создания искусственного интеллекта». – Серия «Науки об искусственном» – 2005.

7. Мамардашвили М.К. «Сознание как философская проблема» – «Вопросы философии», 1990, №10

8. Шалютин С.М. «Искусственный интеллект: гносеологический аспект» – М.: Мысль, 1985.

9. Бобровский С. «Перспективы и тенденции развития систем искусственного интеллекта» – PC Week/RE №32, 2001 г., стр. 32.

НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УКРАИНЫ «КИЕВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ» РЕФЕРАТ на тему: «ПРОБЛЕМА СОЗДАНИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА»

Проблема создания искусственного интеллекта.

Понятие. В.М.Глушков: «Искусственный интеллект (ИИ) – это некоторое устройство, созданное человеком, ведя долгий диалог с которым по более или менее широкому кругу вопросов, человек не сможет различить, разговаривает он с разумным живым существом или с автоматическим устройством».

Другими словами, ИИ – это машина, созданная человеком, способная думать и решать какого-либо рода задачи, если не лучше человека, то, как минимум, на его интеллектуальном уровне.

Проблемы ИИ. Вся совокупность проблем искусственного интеллекта связывается с одной, главной проблемой - нехватка ресурсов двух типов:

    компьютерных (напр.: вычислительная мощность машин, емкость оперативной и внешней памяти);

    интеллектуальных (требуется привлечения ведущих специалистов из разных областей знания, организации долгосрочных исследовательских проектов).

Ресурсы первого типа играют относительно малую роль в проблеме создания ИИ. На данный момент огромные деньги вкладываются именно в разработку технических устройств: разработку высокопроизводительных процессоров, увеличение объема памяти, усовершенствование электронных схем звукового и графического оборудования. Таким образом, ресурсы первого типа уже вышли или выйдут в ближайшем будущем на уровень, который позволил бы системам ИИ решать весьма сложные задачи.

Наибольшую роль в развитии ИИ играют ресурсы второго типа. Ситуация связанная с этими ресурсами катастрофическая. Что касается России, то НИИ занимающихся этой проблемой слишком мало и те не работают, так как государство не видит эту отрасль перспективной, а, следовательно, не выделяет на ее развитие соответствующего материального обеспечения. В мире также относительно небольшое число институтов по изучению и созданию ИИ (Массачусетский технологический институт, Технологический институт Карнеги в Питтсбурге, Стэнфордский университет). Этой проблемой занимаются ученые различных специальностей: кибернетики, лингвисты, психологи, философы, математики, инженеры.

На данный момент ситуация складывается следующим образом.

Новейшие вычислительные системы мало-помалу приближаются по своим вычислительным возможностям к мозгу, хотя ещё и далеки от совершенства. (На данный момент получили широкое распространение компьютеры, обыгрывающие людей в шахматы (большой вклад внес испанский ученый Леонардо Торрес-и-Кеведо)).

Сейчас большинство работ направлено на создание искусственного интеллекта, решающего задачи лишь в относительно ограниченной области (например, управление портом, интегрирование функций, доказательство теорем геометрии и т.п.). Таким образом, возникло много разработок ИИ решающих только разрозненные задачи. Проблема же в том, чтобы они работали не по отдельности, а были включены в единую систему. Сейчас же, говоря о такой системе, явно выделяется нехватка связей между разрозненными частями этой системы, которые заставили бы действовать её как единое целое.

В идеале , с научной точки зрения, основными определяющими чертами ИИ как системы должны быть:

    наличие в них собственной внутренней модели внешнего мира;

    способность пополнения имеющихся знаний;

    способность к дедуктивному выводу, т.е. к генерации информации, которая в явном виде не содержится в системе;

    умение оперировать в ситуациях, связанных с различными аспектами нечеткости;

    способность к диалоговому взаимодействию с человеком;

    способность к адаптации.

Следует выделить следующие задачи, решение которых позволит более близко подойти к разрешению проблемы создания совершенного ИИ.

    развитие государственной политики в области материальной поддержки новых научных технологий и проектов;

    увеличение числа научно-исследовательских лабораторий по работе над созданием искусственного интеллекта;

    развитие научно-теоретических концепций по данной проблеме;

    разработка новых вычислительных машин и прочего аппаратного обеспечения;

    привлечение к работе над созданием ИИ персоналий из смежных научных направлений;

Список литературы:

    Карл, Левитин, Поспелов, Хорошевский. Будущее искусственного интеллекта. - М.: Изд. «Наука», 1991

    Алексеева И.Ю. Искусственный интеллект и рефлексия над знаниями. // "Философия науки и техники". – 1991. - №9

    Бобровский С.А. «Перспективы и тенденции развития искусственного интеллекта» // PC Week.-2001.-№32.- с.32

    Шрейдер Ю.А. Искусственный интеллект, рефлексивные структуры и антропный принцип // "Вопросы философии", 1995, №7.

    Тимофеев А.А. Информатика и компьютерный интеллект. - М.: Изд. «Мир», 1991

    Чижов О.П. Символы новой эпохи. Веб-страница «Проект Кибержизнь» www.cyberlife.ru\concept.html#community

В современном мире проблема создания искусственного интеллекта поднимается все чаще. То тут, то там промелькнут заметки в газетах, что, дескать, искусственный интеллект (ИИ) уже практически создан или применяется на практике в военных целях, космических исследованиях, медицине и т.д. Страсти накаляют и фантастические фильмы, повествующие о реальном существовании ИИ. В свете культовых фильмов "Матрица", "Терминатор", "Я - робот" телезритель приходит к однозначному умозаключению, что до создания ИИ осталось жить совсем недолго, и не пройдет и века, как судьбу человечества будет вершить какая-нибудь сложно организованная машина. Так ли это? Справедливы ли все эти домыслы? Возможно ли создание ИИ в принципе, и сколько осталось ждать, если возможно? На эти вопросы мы и постараемся дать сегодня ответ.

В целом понятие "искусственный интеллект" весьма расплывчато. Микрочипы не встроены сегодня разве что в лампочку, а изготовители всего и вся всерьез убеждают нас в существовании ИИ в их продукции. Если вкратце высказать общую мысль человечества по созданию ИИ, то это простое копирование человекоподобной линии поведения на искусственно созданном объекте для уменьшения затрат и времени человека. Для чего человеку ИИ? ИИ сможет частично или полностью заменить человека во многих специальностях и областях (космонавтика, рабочие специальности и т.д.). Кроме того, ИИ поможет человеку справиться с задачами, которые ему не под силу (сложные вычисления и анализ) и попросту расширит данный ему природой интеллект.

Для полного представления картины начнем с базовых понятий. Термин интеллект (intelligence) происходит от латинского понятия intellectus - ум, разум, рассудок. Искусственный интеллект (artificial intelligence - AI) понимается как способность автоматических систем брать на себя функции человека, выбирать и принимать оптимальные решения на основе ранее полученного жизненного опыта и анализа внешних воздействий. Любой интеллект опирается на деятельность. Деятельность мозга - это мышление. Интеллект и мышление связаны многими целями и задачами: распознавание ситуаций, логический анализ, планирование поведения. Характерными особенностями интеллекта являются способность к обучению, обобщению, накоплению опыта, адаптация к изменяющимся условиям в процессе решения задач. Исходя из самого определения ИИ вытекает основная проблема в создании интеллекта: возможность или невозможность моделирования мышления взрослого человека или ребенка. Если на этот вопрос будет дан отрицательный ответ, то сама идея ИИ теряет смысл в корне.

История развития искусственного интеллекта

Самыми первыми интеллектуальными задачами, в которых стал применяться ИИ (точнее, некое его подобие), стали логические игры (шашки, шахматы) и арифметические операции (решение уравнений, доказательство теорем), а также некоторые простые игрушки. Примером последних может быть электронная мышка, способная исследовать лабиринт и находить из него выход (в ее основе лежала простейшая релейная схема). Первые серьезные исследования относительно создания ИИ были предприняты практически сразу после появления первых ЭВМ. В 1954 году американцы А. Ньюэлл, Дж. Шоу, Г. Саймон и голландец А. Де Гроот совместно создали первый в истории человечества символьный язык программирования ИПЛ1 и в 1957 году написали на нем программу для игры в шахматы. В 1960 г. этой же группой была написана программа GPS (General Problem Slover) - универсальный решатель задач. Программа могла справиться с рядом головоломок, решением интегралов и некоторыми другими задачами. В 1962 году кибернетиком А. Самуэлем была создана программа для игры в шашки. Она была столь успешной, что смогла выиграть у сильнейшего шашиста США Р. Нили. В конце 60-х годов появились первые игровые программы, системы для элементарного анализа текста и решения математических задач. Уже тогда стала известна основная проблема ИИ: программа, которая играет в шахматы, никогда не будет играть в шашки или домино. Разработчики поняли и еще одно: всем написанным программам не достает самого важного - знаний в соответствующих областях. Эти вопросы исследователи стремились решить в следующем десятилетии. В 1974 году состоялся международный шахматный турнир электронных машин. Возгордитесь же! Победу в нем одержала советская машина с шахматной программой "Каисса". Позже программа с подобным ИИ победила всемирного гроссмейстера Г. Каспарова. Конфигурация компьютера была такова: 256 процессоров с 4 Гб дисковой памяти и 128 Мб ОЗУ каждый. К середине 70-х появляются первые интеллектуальные программы, использующие различные способы представления знаний для решения задач - экспертные системы. Одной из первых была экспертная система DENDRAL, предназначенная для составления формул химических соединений на основе спектрального анализа. В 1957 г. американец Ф. Розенблатт предложил модель зрительного восприятия и распознавания - перцептрон. Перцептрон был способен работать в двух режимах: обучение и распознавание. В режиме обучения человек предъявлял объекты и объяснял машине, к какому классу каждый из них принадлежит (описание объекта). Затем в процессе распознавания машине предъявлялись новые объекты, и машина должна была их классифицировать правильно. Достаточно большой интерес с точки зрения ИИ представляет программа математика Хао Ванга, которая за 3 минуты работы на IBM-704 вывела 220 относительно простых лемм и теорем из фундаментальной математической монографии, а затем за 8,5 мин. выдала доказательство еще 130 более сложных теорем, часть которых к тому времени еще не была выведена математиками. Позже были созданы другие экспертные системы ИИ: MYCIN (предназначена для диагностики и лечения инфекционных заболеваний крови), PROSPECTOR (прогнозирует залежи полезных ископаемых), SIMER (система оценки качества воды), CASENET (диагностика и лечение глаукомы) и др.

Сегодня разработка систем ИИ продолжается еще более интенсивными темпами. Над этой проблемой работают крупнейшие мировые институты. ВМС США разрабатывают автоматические роботизированные системы Stryker и им подобные для автономного ведения боя; исследовательские лаборатории молекулярных биологов всего мира пользуются плодами сложных разработок ИИ - автоматическими методиками ПЦР (полимеразная цепная реакция для исследования ДНК), ИФА (иммуно-ферментный анализ для анализа белков), автомобилестроители - разработками ИИ для точной настройки двигателей и других частей автомобилей. Одним словом, история создания искусственного интеллекта продолжается...

Суть процесса искусственного мышления

Если быть максимально кратким, то суть процесса мышления заключается в следующем: по мере наращивания своего мировосприятия человек либо автоматическое устройство приобретает все большие возможности для воспроизводства собственных умозаключений. Эти умозаключения генерируются при решении задач для определения способа достижения поставленной цели. Для этого обычно необходимо выстроить логическую цепочку, начинающуюся на мировосприятии и заканчивающуюся на конкретной цели. Если задача обратна, то цепочку необходимо строить с цели. Сегодня существуют различные принципы построения систем искусственного интеллекта. Среди них - моделирование рассуждений на основе прецедентов (case-base reasoning - CBR), моделирование рассуждений с неопределенностью, рассуждения о действиях и изменениях и т.д. К примеру, в основе CBR - принципа построения ИИ - лежит выбор проблемы, поиск алгоритмов адаптации, поиск прошлого опыта, вывод, основанный на оценке сходства. После установки цели система должна рассмотреть множество случаев и вариантов решения проблемы, а затем выработать искомое решение. Методы построения CBR-интеллекта уже применяются для разработки товаров массового спроса, в медицине и смежных областях, в электронной коммерции и конструировании программ. В большинстве своем все работы по созданию ИИ весьма сложны и проводятся самыми развитыми институтами различных стран мира.

Суть реализации ИИ в теории и на практике

Суть реализации мышления до сих пор до конца не выяснена и остается тайной для науки. Однако наука часто путается сама с определением понятия мышления и путает нас. Как часто газетные и книжные публикации заверяют нас в том, что, раз компьютеры хранят и перерабатывают информацию, то, значит, они способны думать и мыслить. Увы, но люди, написавшие это, абсолютно не представляют себе всю сложность процесса мышления. Да, действительно объемы компьютерной информации реальны. Но эти объемы характеризуют не количество информации в сообщениях как таковой, а количество ячеек машинной памяти, которые они занимают. Сегодня компьютеры перерабатывают в большинстве своем не саму информацию, а всего лишь содержимое ячеек своей памяти (а их можно заполнить чем угодно). Таким образом, вывод напрашивается сам: компьютеры не "осмысливают" содержимое информации. В отличие от компьютеров, для людей характерны исключительно осмысленные понятия. Образно можно сказать, что у людей процесс мышления происходит в душе, в то время как для машин ее не существует.
Из каких компонентов обычно строится система искусственного интеллекта, да и любого интеллекта вообще? В первую очередь ИИ - это совокупность "железа" и программного обеспечения для него. В качестве первого обычно выступает компьютер определенной конфигурации и обслуживающие механизмы (манипуляторы, видеокамеры, звуковые и другие датчики). В большей степени на "интеллектуальность" машины в целом влияет именно программная начинка. Именно она определяет степень "продвинутости" данного ИИ.

В электронной начинке ИИ в первую очередь присутствует огромное количество памяти, на основе которой и строятся все рассуждения и выводы. Понятно, что все знания из различных областей в память ИИ заложить невозможно, но сделать интеллектуальную систему в определенной области познания вполне возможно. Обычно человек изначально закладывает в систему минимальные познания о мире. Далее эти познания расширяются в процессе накопления опыта и вложения его человеком (пассивный путь) либо самой системой (активный путь) в результате ее адаптации к условиям окружающей среды. Однако компьютерная память представляет собой лишь простую совокупность файлов и папок. Память человека устроена гораздо более сложно - она оперирует не файлами и их группами, не клочками информации. Человеческая память - это память образов. Человеческую память можно сравнить с летящей кометой: позади - длинный "хвост" жизненного опыта, который со временем автоматически забывается и затирается новым; сама комета - это слой реальной ежесекундной памяти; тонкий передний слой - это туманные соображения (предвидение) человеческого будущего. Как видим, память систем ИИ пока в корне отличается от человеческой. Во вторую очередь сам логический процесс просчета ситуации происходит в устройстве обработки информации. Чаще всего это определенное программное обеспечение + центральный процессор компьютера. От возможностей этого центра обработки информации напрямую зависит производительность и активность ИИ.

Самым главным отличием программного обеспечения настоящего искусственного интеллекта от простых приложений заключается возможность "мыслить" образами. С помощью образного мышления сегодня стали доступны такие технологии, как сжатие и кодирование информации, обработка биометрических образов, оптимизация гаммы цветопередачи, образный поиск, анализ смысла изображений, автоматическая каталогизация информации, алгоритмы распознавания и классификации образов. Для человека примерами образов могут быть небо, облака, музыка, море, стихи и т.д. Способность восприятия внешнего мира в форме образов позволяет людям узнавать бесконечно большое число объектов и понимать друг друга независимо от национальной принадлежности. Процесс восприятия объекта как образа для машины имеет некоторые особенности. Обычно перед выделением образа (например, графического) заранее считается известным лишь то, что требуется разделить общность точек некоторого пространства на две или более областей, и что после разделения все точки будут принадлежать этим двум (или более) областям. При этом заранее известно только расположение точек исходной области (их примерные координаты). Далее происходит сам процесс разделения точек на области (образы) по каким-либо критериям (для изображения это будет смена цветов и контрастов). Иногда требуется обработать изображение так, чтобы точки были более явными для разделения (например, перевести цветное изображение в черно-белое) - это сделает чувствительность разделения выше (так работает большинство программ для распознавания текста). Если система сможет самостоятельно классифицировать и отфильтровывать не только ранее известные объекты, но и неизвестные (не зная их свойств, по внешнему виду), то этот процесс будет называться самообучением. Сегодня системы ИИ могут различать только немногочисленные образы в небольших заданных пространствах.

Важной особенностью ИИ сегодня должно стать их обучение. Над этой проблемой работают сегодня многочисленные ученые во всем мире. Обучение обычно определяется как процесс, в результате которого система постепенно приобретает способность отвечать нужными реакциями на определенные внешние воздействия. Сегодня существуют прототипы оборудования, способные обучаться простейшим механическим операциям (обработка деталей на станке, копирование человеческой походки). Однако достижения в сфере обучения ИИ пока продвигаются довольно низкими темпами и не поспевают за развитием электроники.
Для решения той или иной задачи ИИ сегодня необходим алгоритм решения (впрочем, как и любому человеку). Алгоритм - это точное предписание о выполнении в определенном порядке операций для решения определенной задачи. Нахождение алгоритма для человека или машины связано с тонкими и сложными рассуждениями. Эти рассуждения часто требуют изобретательности и творческого подхода, поэтому машина постоянно нуждается во взаимодействии с человеком за неимением вышеуказанных качеств. Машине не свойственен "метод тыка" - она сегодня всего лишь ищет варианты решения проблемы из прописанных в базе данных. Важную роль в функционировании ИИ выполняют функции анализа информации и накопления жизненного опыта. Наблюдая за детьми, мы убеждаемся, что большую часть знаний они получают путем обучения и общения с окружающим миром, а не в качестве заложенных в них заранее. Изобретение эффективного механизма самоанализа и самостоятельного накопления жизненного опыта поставит ИИ на значительно более высокий уровень по сравнению с современным.

Сегодня интеллектуальные программы наподобие Copernic или системы распознавания образов установлены практически на каждом ПК. Проанализируем существующие системы ИИ на примерах программ распознавания графических образов и речи. Если говорить о восприятии и обработке речи, то программное обеспечение от Dragon Systems практически уже решило этот вопрос. Speech SDK от Microsoft также позволяет обеспечить приемлемое качество диктовки текста. Устойчивое распознавание слов и целых фраз достигается после нескольких часов тренировки и адаптации к манере произношения пользователя. При этом качество распознавания близко к 95% (сравнимо с качеством распознавания речи у человека). В основе принципа действия подобных программ лежит математическая модель преобразования акустических сигналов и графических изображений в числовые последовательности, каждой из которых соответствует определенное слово или графическая информация из программного словаря (к примеру, так работают программы Cuneiform, Fine Reader). Однако, в отличие от человека, данные программы всего лишь УЗНАЮТ слово или изображение, но не ОСМЫСЛИВАЮТ его. Это отличие является пока непреодолимой пропастью между интеллектом компьютера и человека и не позволяет создать действительно ДУМАЮЩИЙ искусственный интеллект.

Реальные возможности и достоинства искусственного интеллекта

В последнее время можно проследить постепенное превращение программной инженерии в интеллектуальную инженерию, рассматривающую более общие проблемы обработки информации и предоставления знаний. Для определения реальных возможностей развития ИИ рассмотрим перспективные подходы к организации систем ИИ, а заодно и вплотную подойдем к возможностям искусственного интеллекта сегодня.

Нейронные сети. Искусственные нейронные сети пришли к нам из биологии. Они образованы из элементов, возможности которых аналогичны большинству элементарных функций биологического нейрона - нервной клетки. Нейроны в сети выстраиваются в цепи, соединяются. Искусственные нейронные сети демонстрируют большое число свойств, присущих мозгу человека. Они обучаются на основе опыта, обобщают свой опыт, способны выделять главное из поступающей информации. Способность нейронной сети к обучению впервые была исследована Дж. Маккалоком и У. Питтом в опытах 1943 года на созданной ими модели нейрона. Авторы описали принципы построение нейронных сетей. Позже, в 1962 году, Ф. Розенблатт предложил свою модель нейронной сети - перцептрон, а в 1986 г. Дж. Хинтон и его коллеги опубликовали статью с описанием модели нейронной сети и алгоритмом ее обучения, что дало толчок к эффективному изучению нейронных сетей. Если рассматривать строение искусственной нейронной сети, то проще сделать это на примере биологической модели. Нейрон состоит из нескольких входов (дендритов) и одного выхода (аксон). В теле нейрона происходит взвешенное суммирование возбуждения на входах (дендритах), обработка и изменение уровня сигнала на выходе (аксоне) в зависимости от результата обработки поступивших сигналов. Будучи соединенными определенным образом, нейроны образуют нейронную сеть. Для моделей, построенных по типу нейронных сетей человеческого мозга, характерно легкое распараллеливание алгоритмов и высокая производительность. С человеческим мозгом их сближает также еще одно очень важное свойство, напрочь отсутствующее у простых электронных машин: нейронные сети работают даже при условии неполной информации об окружающей среде, т.е., как и человек, они могут отвечать не только "да" или "нет", но и "не знаю точно, но скорее да". Наиболее яркий пример применения сетей - проект Smart Sensor Web военного научного агентства DARPA. Он представляет собой сеть разнообразных датчиков, работающих совместно на поле боя. Каждый объект - источник данных: визуальных, цифровых, электромагнитных, химических, инфракрасных. При использовании данной нейронной сети возможно распознавание целей, анализ и предсказание сбоев техники. Сейчас продолжается совершенствование методов синхронной работы нейронных сетей на параллельных устройствах. Нейронным сетям сегодня под силу распознавание сигналов, речи, изображений, поиск данных, финансовое прогнозирование, шифрование данных. Нейросетевой подход используется в большом количестве задач - для кластеризации информации из Интернета, для имитации и моделирования сложно устроенного человеческого мозга, для распознавания образов и др. К достоинствам нейронных сетей можно отнести самонастраиваемость, гибкость конфигурирования, достаточно высокую эффективность, самообучаемость. Коль уж заговорили об Интернете, то специалисты считают, что в будущем именно он будет определять уклад и занятия отдыхающего человека (цифровое телевидение, универсальная библиотека, игры и т.д.) и, вероятно, в конце концов станет бесплатным (либо условно платным). Сегодня системы ИИ активно используются и в Интернете: это поисковые машины, обладающие примитивными признаками интеллекта и способные в считанные секунды находить и предоставлять информацию (rambler.ru и др.); разнообразные интеллектуальные датчики, призванные посредством сети предупредить об ограблении или пожаре, и т.д. Среди наиболее известных сегодня нейронных сетей выделяют сети Хопфилда, нейронные сети с обратным распространением ошибки и стохастические нейронные сети.

В связи с тем, что в последнее время эффективность обработки информации требует высоких тактовых частот процессоров (а они, как известно, пока уперлись в свой реальный частотный потолок около 4 ГГц), все чаще для повышения эффективности обработки используется многоядерность. Распространение сетей и создание высокопроизводительных кластеров все чаще вызывает интерес к вопросам распределения вычислений: оптимальная загрузка процессоров, гибкое самоконфигурирование, балансировка ресурсов, максимальный самоконтроль. Как тут обойтись без искусственного интеллекта? В свете последних событий в голову приходит мысль о принципиально новых процессорах СЕLL, построенных по принципу многоядерности и обладающих колоссальной производительностью. Возможно, они способны будут в будущем заменить многие серверные сети на современных процессорах. Робототехника. У каждого человека есть стремление максимально облегчить свой труд. Робототехника - это весьма перспективное на сегодня развитие формы ИИ. Поскольку работу мышц можно заменить только работой других приспособлений, человек не преминул этим воспользоваться - на многих заводах вместо людей сегодня трудятся роботы. Первых роботов трудно было назвать интеллектуалами. Только в конце 60-х годов были сконструированы роботы, управлявшиеся компьютерами. К примеру, в результате разработки проекта "Промышленный интеллектуальный робот" в Японии в 1969 году был собран робот с элементами ИИ для выполнения сборочно-монтажных работ с визуальным контролем. Манипулятор робота имел 6 степеней свободы и был оснащен тактильными датчиками. Зрение робота было организовано посредством двух видеокамер, снабженных светофильтрами для распознавания цвета предметов. Робот был способен грубо определять область, занимаемую интересующим предметом, и грубо распознавать простые предметы. Постепенно характеристики роботов значительно улучшились, и сегодня точности их работы позавидует любой человек (достаточно вспомнить лазерные роботизированные механизмы для изготовления микросхем или процессоров). Фирмой Epson изобретены даже летающие прототипы роботов. Сегодня в США планируется к 2005 году перевести довольно большую часть вооруженных сил на роботизированную основу. Внимание общественности привлекают ежегодные соревнования роботов-машин, передвигающихся по пересеченной местности, пользуясь при этом только картой. Эти сложно организованные механизмы способны самостоятельно принимать решения по координации передвижения и имеют для этого в составе примитивный ИИ с датчиками наклона автомобиля, радиомаяком, компасом, дальномером, инфракрасными и другими датчиками мониторинга движения. В США последнее время ведутся разработки по машинному обучению, навигации роботов, логическому планированию их действий и т.д.

Экспертные системы. Сегодня общество интересуют системы принятия решений в реальном времени, средства хранения, извлечения, анализа и моделирования знаний, системы динамического планирования. Среди них уже сегодня имеются конкретные результаты:
DENDRAL - высокоинтеллектуальная система распознавания химических структур. Это старейшая из экспертных программ. Первые версии данной системы появились еще в 1965 году. Пользователь задает системе DENDRAL некоторую информацию о веществе, а также данные спектрометрии (инфракрасной, ядерного магнитного резонанса и масс-спектрометрии), и та в свою очередь выдает диагноз в виде соответствующей химической структуры. MICIN - экспертная система медицинской диагностики. Она разработана группой по инфекционным заболеваниям Стенфордского университета. Программа ставит соответствующий диагноз, исходя из представленных ей симптомов, и рекомендует курс медикаментозного лечения любой из диагностированных инфекций.
PUFF - система анализа нарушения дыхания человека. Она представляет собой MICIN, из которой удалили данные по инфекциям и вставили данные о легочных заболеваниях.
PROSPECTOR - система, созданная для содействия поиску коммерчески оправданных месторождений полезных ископаемых.
Машинное обучение и самообучение. Этому вопросу уделяется сегодня огромное, если не главное, внимание в сфере искусственного интеллекта. Существует множество алгоритмов машинного обучения. Один из самых распространенных - алгоритмы класса С4. Эти алгоритмы позволяют выстраивать сложное древо решений и анализировать его. С каждой ветвью древа ассоциируется определенный класс примеров решения проблемы. В процессе решения классы могут разбиваться на подклассы. Завершение работы алгоритма - принятие того или иного решения, удовлетворяющего потребностям задачи. Недостаток такого алгоритма - ограниченность примеров решения проблемы.

Интеллектуальный анализ данных и обработка статистической информации. Сравнительно новое направление применения ИИ. Сюда относят процесс обнаружения ИИ закономерностей в исходной информации, выделение этих закономерностей, построение определенной модели для анализа информации, а затем прогнозирование результатов исследования на будущее и представление в виде графической информации. Это весьма перспективное направление ИИ уже реально применяется на различных биржах и в маркетинговой деятельности.

Системы автоматического планирования поведения. Таковые реально применяются сегодня на космических кораблях при освоении космоса и в батискафах для изучения глубин морского дна. Одним словом, это та область применения ИИ, где не допускается присутствие человека в принципе либо его вмешательство должно быть незначительным. Современные системы планирования поведения - это устройства с высокой степенью автономности и детальным целенаправленным поведением.
Агентные системы - очень молодое направление ИИ. Под таковыми понимают специальные программы-агенты, нацеленные на исследование коллективной аудитории и обладающие автономностью (абсолютно самостоятельная программа), социальностью (способна общаться с человеком), реактивностью (способна воспринимать окружающую среду, адекватно реагировать на ее изменения) и активностью (агенты могут характеризоваться целенаправленность поведения и проявлять инициативу). Подобные программы представляют огромный интерес для коммерческой и промышленной деятельности (маркетинг, телевидение, реклама), в военном деле (системы управления войсками), в системах управления транспортом и электронными сетями, где уже успешно применяются.
Самоорганизующиеся СУБД. Эти базы данных способны гибко подстраиваться под профиль конкретной задачи и практически не требуют вмешательства извне.
Автоматический анализ языков. Сюда относят поиск по словарям, распознавание языков, перевод, выявление незнакомых слов, лексику, грамматику и т.д.
Медицинские системы для выполнения точных операций и консультирования врачей в сложных ситуациях; роботы-манипуляторы для проведения операций повышенной точности (например, на сетчатке глаза).
Создание полностью автоматизированных заводов с заменой людей (особенно работа в условиях повышенной опасности). Таковые прототипы уже давно имеются. Большинство поточных линий на современных заводах микроэлектронной и других промышленностей нуждаются всего лишь в нескольких операторах-настройщиках, а всю работу по сборке и упаковке продукции выполняют роботы.
Одна из интереснейших и полезных сторон применения ИИ - разработка игр, развлекательных программ и систем искусственного общения с человеком. Большую долю здесь занимает моделирование социального поведения, общения, человеческих эмоций, творчества. Это одно из сложнейших направлений разработки ИИ и в то же время - одно из самых перспективных.

Современные системы искусственного интеллекта способны освоить гораздо больше специальностей, чем простой человек, благодаря значительно большему числу разнообразных датчиков информации и приспособлений. Эти воспринимающие датчики были созданы по типу строения органов чувств человека. К примеру, система зрения человека организована следующим образом: глаз (оптико-воспринимающая часть системы) -> нервные передающие волокна -> воспринимающие и анализирующие участки головного мозга (зрительные бугры мозга и участки коры полушарий). Теперь сравните эту систему со зрительной системой роботов: камера (система линз + фоточувствительная матрица) -> провода, передающие сигнал -> контроллер материнской платы с софтом для декодирования и анализа зрительной информации. Сравните эти две схемы. Нашли разницу? По сути, ее почти нет, наблюдается практически стопроцентное сходство. Разница только в том, что системы ИИ сегодня, в отличие от человека, могут воспринимать инфракрасный свет, ультрафиолет, видеть в полной темноте, слышать во всем диапазоне звуковых волн, производить передвижения с очень высокой точностью (до микрона), чувствуют изменения электромагнитого поля, магнитного поля земли, давления, напряжения электричества, никогда не засыпают и не чувствуют усталости. Разработки ИИ применяется сегодня в качестве автономных секретарей, поисковых машин (google.ru в Интернете), планировщиков работ, профессиональных учителей, продавцов. Также предполагается использование в дальнейшем систем ИИ во всевозможных бытовых приборах: уборщиках помещений; агрегатах для приготовления, доставки и заказа пищи; автоматических водителях автомобилей и т.д.
Однако не следует думать, что ЭВМ или роботы смогут решать любые задачи. Учеными доказано существование таких типов задач, для решения которых невозможен единый эффективный алгоритм (к примеру, сложные жизненные ситуации). Человек часто методом "научного тыка" расширяет для себя зону познания о природе, открывает новые законы. Компьютерному искусственному интеллекту это абсолютно несвойственно. В связи с этим поговорим о недостатках современных систем искусственного интеллекта.

Недостатки и проблемы современного искусственного интеллекта

Сегодня мы имеем возможность наблюдать постоянный рост вычислительной мощности компьютеров. Означает ли это появление у них ИИ? Отнюдь! К сожалению, даже принципы работы человеческой психики сегодня остаются неясными. А поскольку ИИ изначально задумывался как прообраз человека, то создание его сопряжено с неизвестностью. Однако рост производительности ПК в сочетании с повышением качества алгоритмов обработки делает возможным применение различных научных методов на практике в различных сторонах жизни человечества. Рассмотрим основные проблемы, связанные с разработкой ИИ на практике.

Большинство современных разработок ИИ используют несколько типов понятий: да (хорошо) и нет (плохо). В математике и электронике это нормально, но в жизни точные понятия пригождаются редко. Поскольку изначально ИИ задумывается как человекоподобный интеллект, служащий дополнением человеку, то угодить этому самому человеку будет очень нелегко. Как, к примеру, машине понять депрессивное состояние или эйфорию человека? Понятия "веселый" и "грустный" для машины здесь никак не подходят.
Проблемы в разработке ИИ прослеживаются и на уровне формирования образов и образной памяти. Поскольку образы в мышлении человека взаимопроникают друг в друга, то формирование образных цепочек у людей не представляет сложности - оно ассоциативно. Файлы же, в противоположность образам, есть обособленные пакеты машинной памяти. В памяти человека поиск данных ведется не по самому содержимому памяти, а вдоль готовых цепочек ассоциативных связок. Компьютер же ищет только конкретные файлы и папки. Пример: для человека не проблема узнать лицо друга на фотографии, даже если он похудеет или поправится, т.к. это яркий пример ассоциативной памяти. Для машины это практически невозможно. Она не сможет отличить главное от второстепенного.

Для получения результата ИИ использует только определенную базу известных данных. Ему несвойственен эксперимент.
Проблема перевода с одного языка на другой, а также обучения машины языку. Если вы предложите современным программам-переводчикам (например, Promt) перевести любой абзац из книги на другой язык, то поймете, что качеством здесь и не пахнет. В результате вы получите простой набор слов. Почему? Потому, что для перевода целых предложений необходимо понимать смысл предложения, а не просто переводить слова. Современные ИИ-программы смысл в тексте выделять пока не могут (вероятно, потому, что посредником для перевода, скажем, с французского на русский, является бездушный машинный язык - язык единиц и нолей).
Простота математических расчетов. В последнее время многими ведущими специалистами в области ИИ внесено предложение по исключению из списка высокоинтеллектуальных задач простого алгебраического решения уравнений, т.к. для этого сегодня имеются стандартные последовательные алгоритмы расчета. Это не требует сложных, многоэтапных и часто непоследовательных интеллектуальных способностей. Распознавание текста, игра в шахматы, напротив, требуют разбиения процесса на части и поиска решения из многочисленных возможных вариантов. Более того: даже распознавание текста, игра в шахматы и шашки, распознавание звуков на сегодня успешно применяются на практике, и их не принято возводить в ранг проблем ИИ. Современные разработки, связанные с искусственным интеллектом, неспособны к самокопированию (размножению). Это действительно так. На современном этапе развития кибернетики и электроники абсолютно самостоятельное самокопирование роботов невозможно, необходимо хотя бы частичное (часто значительное) вмешательство человека. Однако для программ этот процесс абсолютно прост - что стоит утилите самостоятельно копироваться в другую директорию? Ярким примером может стать "болезнь" современного Интернета - компьютерные и мобильные вирусы. Они способны к бесконтрольному размножению и значительно портят нам жизнь.

Еще одна проблема на пути к созданию ИИ - отсутствие у оного всякого проявления воли. Как это ни странно звучит, но у современных ПК есть колоссальные возможности к сложным расчетам, но абсолютно отсутствуют какие-либо желания. Даже если вы снабдите свой ПК микрофоном и акустикой, это абсолютно не значит, что он начнет самостоятельно писать музыку или самопроизвольно запускать какие-либо приложения. Он не ленивый - просто у него нет желаний. Компьютеру все равно, кто с ним работает, зачем и с какой целью.

У современных прототипов ИИ отсутствуют стимулы к дальнейшему совершенствованию. Дело в том, что в природе на любой живой организм действует фактор естественного отбора, порождающий постоянное приспособление к условиям окружающей среды. Голод, стремление выжить и дать потомство - вот факторы, постоянно действующие на живой огранизм. Они действуют как стимул к дальнейшему совершенствованию. Мотивация большинства современных ИИ весьма примитивна: человек задал задачу - машина ее выполняет без вариантов и эмоций. Теоретически на мотивацию и совершенствование может повлиять введение обратных связей компьютер -> человек и создание улучшенной системы самообучаемости машины. Правда, это только теория - на практике же все оказывается намного сложнее. Однако подобная работа уже проводится. В качестве стимула выбрано элементарное чувство голода - предвестник скорого окончания энергетических ресурсов и, соответственно, существования машины. Американец С. Вилкинсон создал "гастроробота" по имени "Жуй-жуй". Машина питается сахаром, и основой ее поведения является исследование окружающего мира в поисках съестного. Тело "Жуй-жуя" состоит из трех тележек, а чувство голода является его постоянным спутником, поскольку аккумуляторы постоянно требуют перезарядки. Проблемой являются частые ошибки этого "зверя" в выборе продуктов питания.

Некоторая примитивность искусственных нейронных сетей. Искусственные нейронные сети демонстрируют сегодня удивительные преимущества, присущие человеческому мозгу. Они обучаются на основе личного опыта, обобщают происходящее, самоконфигурируются, извлекают главное из поступающей информации с лишними данными. Однако даже самые развитые искусственные сети не могут дублировать функции человеческого мозга. Реальный интеллект, демонстрируемый сегодня самыми сложно устроенными нейронными сетями, находится ниже уровня развития интеллекта дождевого червя. Неэффективность искусственного интеллекта в военных целях. В последнее время в СМИ довольно часто появляются новости о создании ИИ в военных целях. Однако в реальности перед создателями подобных машин-роботов стоят очень сложные и часто неразрешимые задачи. Прежде всего это недостатки систем автоматического распознавания, неспособных самообучаться и адекватно анализировать информацию в режиме реального времени (принимать нужные решения в нужную минуту). Такой боевой машине очень тяжело, а скорее всего - практически невозможно, будет отличить на поле боя своих от чужих (весьма забавная ситуация, не правда ли:)). Также пока не разработано алгоритмов работы подобных устройств в условиях незнакомой местности и резко изменяющейся ситуации. Подобные боевые единицы способны сегодня максимум к простому дистанционному управлению. Более выдающиеся результаты достигнуты военными в прикладных направлениях: точное распознавание речи и тембра голоса, разнообразные "детекторы лжи", создание консультационных систем (снижение однотипных действий и нагрузки на пилотов в режиме реального полета), системы низкоуровневого анализа изображения, получаемого от видеокамеры, и т.д. Помимо этого, сегодня создано достаточно большое количество приборов с подобием ИИ, призванных усовершенствовать работу вооруженных сил: разнообразные интеллектуальные сонары и радары для обнаружения целей, спутниковая система позиционирования для точного координирования локализации войск и их передвижения, разнообразные системы навигации в судоходстве.

Выводы

Сегодня продолжается внедрение логики в прикладные области и программы. Программ глобального масштаба, способных хоть в какой-то мере соответствовать реальному человеку, вести процесс разумного мышления и общения, пока нет и в ближайшем времени не предвидится (слишком много существует преград и неразрешимых проблем). Сегодня компьютер выполняет только точные указания, которые ему даст человек. При написании любого приложения программист пользуется языком высокого уровня, затем программа-транслятор переводит это приложение на машинный язык директив, который и понимает процессор компьютера. Поэтому становится понятно, что сам по себе компьютер к мышлению неспособен в принципе, но высокоуровневые программы относительно интеллектуальны.

Делая вывод из всего сказанного, можно сказать, что высокоинтеллектуальное мышление - это свойство не ВЫСОКООРГАНИЗОВАННОЙ МАТЕРИИ, а свойство ВЫСОКООРГАНИЗОВАННОЙ ДУШИ. Животные и человек способны ставить и решать задачи. Компьютеры - устройства неодушевленные. Их сегодня очеловечивают программисты, а машины лишь следуют их указаниям. К сожалению, как бы ни была сложна по устройству современная программа, какие бы сложные алгоритмы ни были бы в нее заложены, в конечном итоге она не сможет сделать ничего помимо того, что не предусмотрено ее автором. Возможно, в будущем что-то и изменится, но не сегодня...

Ученые пытаются приоткрыть завесу отдаленного будущего. Возможно ли создание искусственного интеллекта? Можно ли создать такие человекоподобные системы, которые смогут мыслить абстрактными образами, будут самокопироваться, самообучаться, корректно реагировать на изменения окружающей среды, обладать чувствами, волей, желаниями? Можно ли создать соответствующие алгоритмы? Сможет ли человечество контролировать такие объекты? К сожалению, ответов на эти вопросы пока нет. Остается надеяться на то, что, если искусственный интеллект можно создать в принципе, то рано или поздно он будет создан.

Понятие искусственного интеллекта многогранно. Но несколько наиболее важных аспектов все же можно выделить. Во-первых, это вопрос о том, что такое искусственный интеллект , ведь определение понятия обусловливает предмет, цель, методы, успешность исследования. Во-вторых, интеллект подразумевает обработку информации, поэтому важной является проблема представления знаний в системах искусственного интеллекта . В-третьих, существовали и существуют различные подходы к решению вопросов, связанных с созданием интеллектуальных систем , и их рассмотрение проливает свет на многие аспекты проблемы. В-четвертых, огромное значение имеет обеспечение взаимодействия систем искусственного интеллекта с человеком на естественном языке , так как при этом значительно облегчается ведение диалога с ними.

Несмотря на то, что, по мнению некоторых ученых, искусственный интеллект принципиально невозможен, разработки в области создания систем искусственного интеллекта являются в настоящее время одним из приоритетных направлений в науке.

Понятие "искусственный интеллект" вкладывается различный смысл - от признания интеллекта у ЭВМ, решающих логические или даже любые вычислительные задачи, до отнесения к интеллектуальным лишь тех систем, которые решают весь комплекс задач, осуществляемых человеком, или еще более широкую их совокупность.

В исследованиях по искусственному интеллекту ученые отвлекаются от сходства процессов, происходящих в технической системе или в реализуемых ею программах, с мышлением человека. Если система решает задачи, которые человек обычно решает посредством своего интеллекта, то мы имеем дело с системой искусственного интеллекта.

Однако это ограничение недостаточно. Создание традиционных программ для ЭВМ- работа программиста - не есть конструирование искусственного интеллекта. Какие же задачи, решаемые техническими системами, можно рассматривать как конституирующие искусственный интеллект?

Чтобы ответить на этот вопрос, надо уяснить, прежде всего, что такое задача . Как отмечают психологи, этот термин тоже не является достаточно определенным. По-видимому, в качестве исходного можно принять понимание задачи как мыслительной задачи, существующее в психологии. Они подчеркивают, что задача есть только тогда, когда есть работа для мышления, т. е. когда имеется некоторая цель, а средства к ее достижению не ясны; их надо найти посредством мышления.

Так понимаемая задача, в сущности, тождественна проблемной ситуации, и решается она посредством преобразования последней. В ее решении участвуют не только условия, которые непосредственно заданы. Человек использует любую находящуюся в его памяти информацию, "модель мира", имеющуюся в его психике и включающую фиксацию разнообразных законов, связей, отношений этого мира.


Если задача не является мыслительной, то она решается на ЭВМ традиционными методами и, значит, не входит в круг задач искусственного интеллекта. Ее интеллектуальная часть выполнена человеком. На долю машины осталась часть работы, которая не требует участия мышления, т. е. "бессмысленная", неинтеллектуальная.

Под словом "машина" здесь понимается машина вместе с ее совокупным математическим обеспечением, включающим не только программы, но и необходимые для решения задач "модели мира". Недостатком такого понимания является главным образом его антропоморфизм. Задачи, решаемые искусственным интеллектом, целесообразно определить таким образом, чтобы человек, по крайней мере, в определении отсутствовал. Основная функция мышления заключается в выработке схем целесообразных внешних действий в бесконечно варьирующих условиях. Специфика человеческого мышления (в отличие от рассудочной деятельности животных) состоит в том, что человек вырабатывает и накапливает знания, храня их в своей памяти. Выработка схем внешних действий происходит не по принципу "стимул - реакция", а на основе знаний, получаемых дополнительно из среды, для поведения в которой вырабатывается схема действия.

Этот способ выработки схем внешних действий (а не просто действия по командам, пусть даже меняющимся как функции от времени или как однозначно определенные функции от результатов предшествующих шагов) является существенной характеристикой любого интеллекта. Отсюда следует, что к системам искусственного интеллекта относятся те, которые, используя заложенные в них правила переработки информации, вырабатывают новые схемы целесообразных действий на основе анализа моделей среды, хранящихся в их памяти. Способность к перестройке самих этих моделей в соответствии с вновь поступающей информацией является свидетельством более высокого уровня искусственного интеллекта.

Большинство исследователей считают наличие собственной внутренней модели мира у технических систем предпосылкой их "интеллектуальности". Формирование такой модели связано с преодолением синтаксической односторонности системы, т.е. с тем, что символы или та их часть, которой оперирует система, интерпретированы, имеют семантику.

Характеризуя особенности систем искусственного интеллекта , специалисты указывают на:

1) наличие в них собственной внутренней модели внешнего мира; эта модель обеспечивает индивидуальность, относительную самостоятельность системы в оценке ситуации, возможность семантической и прагматической интерпретации запросов к системе;

2) способность пополнения имеющихся знаний;

3) способность к дедуктивному выводу, т.е. к генерации информации, которая в явном виде не содержится в системе; это качество позволяет системе конструировать информационную структуру с новой семантикой и практической направленностью;

4) умение оперировать в ситуациях, связанных с различными аспектами нечеткости, включая "понимание" естественного языка;

5) способность к диалоговому взаимодействию с человеком;

6) способность к адаптации.

На вопрос, все ли перечисленные условия обязательны, необходимы для признания системы интеллектуальной, ученые отвечают по-разному. В реальных исследованиях, как правило, признается абсолютно необходимым наличие внутренней модели внешнего мира, и при этом считается достаточным выполнение хотя бы одного из перечисленных выше условий.

П. Армер выдвинул мысль о "континууме интеллекта": различные системы могут сопоставляться не только как имеющие и не имеющие интеллекта, но и по степени его развития. При этом, считает он, желательно разработать шкалу уровня интеллекта, учитывающую степень развития каждого из его необходимых признаков. Известно, что в свое время А.Тьюринг предложил в качестве критерия, определяющего, может ли машина мыслить, "игру в имитацию". Согласно этому критерию, машина может быть признана мыслящей, если человек, ведя с ней диалог по достаточно широкому кругу вопросов, не сможет отличить ее ответов от ответов человека.

Критерий Тьюринга в литературе был подвергнут критике с различных точек зрения. Действительно серьезный аргумент против этого критерия заключается в том, что в подходе Тьюринга ставится знак тождества между способностью мыслить и способностью к решению задач переработки информации определенною типа. Успешная "игра в имитацию" не может без тщательного предварительного анализа мышления как целостности быть признана критерием способности машины к мышлению.

Однако этот аргумент бьет мимо цели, если мы говорим не о мыслящей машине, а об искусственном интеллекте, который должен лишь продуцировать физические тела знаков, интерпретируемые человеком в качестве решений определенных задач. Поэтому прав В.М. Глушков, утверждая, что наиболее естественно, следуя Тьюрингу, считать, что некоторое устройство, созданное человеком, представляет собой искусственный интеллект, если, ведя с ним достаточно долгий диалог по более или менее широкому кругу вопросов, человек не сможет различить, разговаривает он с разумным живым существом или с автоматическим устройством. Если учесть возможность разработки программ, специально рассчитанных на введение в заблуждение человека, то, возможно, следует говорить не просто о человеке, а о специально подготовленном эксперте. Этот критерий, на взгляд многих ученых, не противоречит перечисленным выше особенностям системы искусственного интеллекта.

Теория искусственного интеллекта при решении многих задач сталкивается с гносеологическими проблемами.

Одна из таких проблем состоит в выяснении вопроса, доказуема ли теоретически (математически) возможность или невозможность искусственного интеллекта. На этот счет существуют две точки зрения. Одни считают математически доказанным, что ЭВМ в принципе может выполнить любую функцию, осуществляемую естественным интеллектом. Другие полагают в такой же мере доказанным математически, что есть проблемы, решаемые человеческим интеллектом, которые принципиально недоступны ЭВМ. Эти взгляды высказываются как кибернетиками, так и философами.

Знание - основа интеллектуальной системы

Многие виды умственной деятельности человека, такие, как написание программ для вычислительной машины, занятие математикой, ведение рассуждений на уровне здравого смысла и даже вождение автомобиля - требуют "интеллекта". На протяжении последних десятилетий было построено несколько типов компьютерных систем, способных выполнять подобные задачи.

Имеются системы, способные диагностировать заболевания, планировать синтез сложных синтетических соединений, решать дифференциальные уравнения в символьном виде, анализировать электронные схемы, понимать ограниченный объем человеческой речи и естественного языкового текста. Можно сказать, что такие системы обладают в, некоторой степени, искусственным интеллектом.

Работа по построению таких систем проводится в области, получившей название искусственный интеллект (ИИ).

При реализации интеллектуальных функций непременно присутствует информация, называемая знаниями. Другими словами, интеллектуальные системы являются в то же время системами обработки знаний.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Тема: «Проблема создания искусственного интеллекта»

Введение

С каждым годом научно-технический прогресс наращивает свои обороты. Развиваются технологии, которые еще несколько десятилетий назад считались научной фантастикой. Мы можем общаться друг, с другом находясь на расстоянии тысяч километров, перемещаться над поверхностью планеты почти со скоростью звука. Не так давно человечество приступило к автоматизированным полетам на другие планеты нашей солнечной системы, что стало возможным благодаря бурному развитию сферы информационных технологий. Но как бы не развивалась наука и техника, человечеству до сих пор не удалось решить свою главную проблему, это относительно небольшая продолжительность жизни и хрупкость человеческого тела. Со временем ученые найдут способ восстановить или заменить любую часть человеческого организма, за исключением головного и спинного мозга т.к. их структура настолько сложна, что человечество пока не в силах создать нечто подобное. В теории существует несколько способов решения этой задачи. Один из них это создание механического существа, которое наделено искусственно созданным разумом.

В своей работе я остановлюсь на тех проблемах, которые не позволяют современным ученым и конструкторам создать такой разум, который был бы сопоставим по своим возможностям с человеческим интеллектом. Существует множество научно популярных фильмов и статей, в которых рассказывается о том, что попытки создать нечто подобное уже были и существуют рабочие прототипы, способные только на самые простейшие операции, заранее прописанные в программе. Если все же удастся создать нечто подобное, то области применения его будут безграничны. Особенно в тех сферах деятельности, где человеку находиться невозможно. (Открытый космос, другие планеты, дно океана и т.д.). Это откроет новые горизонты перед человечеством.

Цель исследования: рассмотреть проблемы создания искусственного интеллекта.

Объект исследования: проблемы создания искусственного интеллекта.

Предмет исследования: Искусственный интеллект.

Задачи работы:

1) Рассмотрение этапов становления теории искусственного интеллекта (ИИ) и основоположники теории. Появление понятия искусственный интеллект.

2) Какие направления или разработки существуют в этой области в настоящее время.

3) Выявление проблем не позволяющих создать ИИ.

1. Этапы становления теории искусственного интеллекта. Появление понятия искусственный интеллект

Прежде чем рассуждать на тему искусственного интеллекта необходимо, прежде всего, выяснить, что понимается под этим термином и как зарождалось учение о нем.

Можно выделить несколько этапов развития теории искусственного интеллекта:

1. Домашинный этап (до 17 в)

2. Этап механических и механико-электрических вычислительных машин (19- середина 20 века)

В этот период вычислительные машины использовались для учета (учет товаров, перепись населения, наука) и для шифрования сообщений.

3. Этап появления первых ЭВМ (начиная с 40-х гг. 20 века).

Решаемые задачи: Ввод, хранение, простейшая обработка значительных объемов данных.

4. Этап появления первых управляющих вычислительных машин начиная с 50-х гг. 20в.

С помощью этих машин осуществлялся контроль за параметрами функционирования простейших технических объектов или больших технических систем. (Например, управляемые ракеты, заводы, линии связи).

Считается, что именно на данном этапе произошло рождение термина искусственный интеллект. В 1956 году в Дартмутском колледже в США Джоном Маккарти был созван семинар. Приглашены были основные деятели в этой области на то время. Всего пришло 10 участников, среди них были как и серьёзные монополисты в этой области (Клод Элвуд Шеннон, Уоррен Маккалок) так и энтузиасты. Проходил этот семинар в течение 3 месяцев. В итоге каких- либо серьезных открытий на данном семинаре не было сделано. Участники лишь узнали о существовании разработок друг друга. Все участники данного семинара договорились, что в дальнейшем разработки в области создания роботов, компьютеров, программ и т.д. будут относить к области знаний, которую они назвали - «Искусственный интеллект». Инициатором данного предложения стал Джон Маккарти.

Вот еще несколько определений, которые приводятся некоторыми авторами.

· «Новое захватывающее направление работ по созданию компьютеров, способных думать,… машин, обладающих разумом, в полном и буквальном смысле этого слова»

· «Автоматизация действий, которые мы ассоциируем с человеческим мышлением, т.е. таких действий, как принятие решений, решение задач, обучение…»

· «Искусство создания машин, которые выполняют функции, требующие интеллектуальности при их выполнении людьми»

· «Наука о том, как научить компьютеры делать то, в чем люди в настоящее время их превосходят»

· «Изучение умственных способностей с помощью вычислительных моделей»

· «Изучение таких вычислений, которые позволяют чувствовать, рассуждать и действовать»

· «Вычислительный интеллект - это наука о проектировании интеллектуальных агентов»

· «Искусственный интеллект - это наука, посвящённая изучению интеллектуального поведения артефактов.

Искусственный интеллект - это научное направление, в рамках которого ставятся и решаются задачи аппаратного или программного моделирования тех видов человеческой деятельности, которые традиционно считаются интеллектуальными (http://www.aiportal.ru)

Можно сделать вывод, что «искусственный интеллект» это может быть не только один, какой то определённый робот или компьютер, а это целая научная область целью, которой является разработка способов создания так называемых машин, автоматов или роботов которые бы обладали свойством интеллекта.

Что же можно назвать интеллектом? Айзенк Г.Ю. Выделяет три концепции интеллекта. Первая это биологический интеллект. Биологический интеллект является фундаментальной основой человеческого поведения. Он определяется физиологическими, нейрологическими, биохимическими, гормональными свойствами человеческого организма. И прежде всего, связан с функциями и структурами коры головного мозга. Без деятельности этого интеллекта невозможно никакое осмысленное поведение. Определяется соотношение этих свойств генетикой. Измерить такой интеллект можно с помощью ЭЭГ, кожной гальванической реакции, измерение скорости реакции.

Вторая концепция это психометрический интеллект. Это такой интеллект, который можно измерить с помощью обычных тестов на IQ. По статистическим данным, которые приводятся автором, он делает вывод, что психометрический интеллект на 70% определяется генетическими факторами и только на 30% факторами среды. Такими как социокультурные факторы, воспитание и т.д.

Третья концепция называется социальный интеллект. Это «проявление социально полезной адаптации» т.е. В него входят опыт, здоровье, личность, образование, психические нарушения, семейное воспитание, стратегии в действии, отношение к алкоголю, культурные факторы и т.д.

На сегодняшний день единого общепринятого определения интеллекта нет. Определение варьируется в зависимости от того в какой сфере оно применяется. В такой области исследований как искусственный интеллект не применимы биологические показатели. Применимо определение интеллекта как социально полезной адаптации. Искусственный разум должен быть полезен обществу и должен обладать такими качествами и свойствами, чтобы наиболее беспроблемно в него влиться.

2. Разработки в области искусственного интеллекта существующие в настоящее время

Современные исследования в области искусственного интеллекта можно разделить на две группы. Первая группа занимается созданием искусственного разума путем моделирования на компьютере функций человеческого организма. Они составляют программы и алгоритмы предназначенные, к примеру, для распознавания объектов или цветов. Эта группа исследователей относится к классической школе изучения проблем искусственного интеллекта. Существует так же школа, занимающаяся альтернативными исследованиями. Например, создание искусственных нейронных сетей. Или роботизированных протезов. Рассмотрим достижения в области классических методов исследования.

2.1 Модели представления знаний

Для того чтобы искусственный разум мог оперировать знаниями в какой-либо предметной области ему необходимо каким то образом представлять свои знания. Для этого были разработаны различные модели представления знаний. Их можно разделить на классические модели, включающие в себя: логические методы, фреймы, семантические сети, правила продукций. Кратко рассмотрим суть каждого из них:

· Из логических способов наиболее часто используют логику силлогизмов Аристотеля, Дж Буля, Л. Заде и Ч. Осгуда. Именно логика была первой внедрена в сферу информационных технологий. Нужна она была для того что бы можно было как - то формализировать окружающий мир. Т.е. выразить все, что нас окружает в формулах. Формулы можно ввести в программу, что ускорит решение задачи. Именно логика заложила фундамент практически для всех современных разработок в сфере информационных технологий.

· «Фрейм - структура данных для представления стереотипной ситуации. С каждым фреймом ассоциирована информация разных видов. Одна ее часть указывает, каким образом следует использовать данный фрейм, другая - что предположительно может повлечь за собой его выполнение, третья - что следует предпринять, если эти ожидания не подтвердятся». Понятие фрейма было заимствовано из гештальтпсихологии. Человеческий глаз воспринимает мир как пучок фотонов. Но мы же не воспринимаем мир в виде разноцветных пятен. Суть заключается в том, что мы видим, слышим, осязаем окружающий мир только потому, что в нашей памяти заложены так называемые гештальты, которые сформировались ранее в нашей жизни при встрече с каким либо объектом или явлением. Они в свою очередь состоят из системы взаимосвязанных фреймов.

· Семантичеcкие сети представляют собой совокупность смысловых связей между словами в предложении. С помощью данного метода компьютер можно научить извлекать смысл из предложений и высказываний.

· Правило продукций заключается в следующей логической связке. «Если событие. А, то действие Б.» С помощью данного правила можно задавать строгие модели поведения.

Все эти, казалось бы, устаревшие методы до сих пор используют программисты, инженеры и разработчики в сфере информационных технологий и искусственного интеллекта.

Так же выделяют группу новых методов. К ним относят: критериальные методы, стохастические методы.

· С помощью критериальных методов можно научить компьютер делать выводы на основе нескольких критериев. Т.е. происходит перебирание нескольких вариантов развития событий с различным результатом. И выбирается наиболее подходящий с учетом обстоятельств. Совсем не обязательно, что выбранный ход событий будет иметь положительные последствия.

· Стохастические методы так же позволяют делать определённые выводы, но уже на основе вероятности какого-либо события.

· В настоящее время очень бурно развивается метод создания нейронных сетей. Создаются виртуальные сети нейронов подобные тем, что есть в человеческом мозге. При определённом построении данных сетей с помощью математических и логических методов они могут самообучаться. Конечно процесс обучения данных сетей намного проще, чем в человеческом мозге. Совсем недавно компания Google создала нейронную сеть, используя 16 тысяч процессорных ядер. Целью данной системы было проанализировать 1 миллион изображений и научиться выделять на них лица. Она не только научилась выделять лица людей. Так же она выделила отдельные части тела и морды животных. Конечно не без ошибок, но как подсчитали исследователи, это превзошло результаты предыдущего эксперимента на 70%.Нейронные сети относятся к альтернативной школе искусственного интеллекта.

· Распознавание образов.

При получении изображения для компьютера оно представляет собой не более чем двумерную картину из смеси различных цветов. Для того чтобы решить эту проблему компьютерной системе предлагается определённая модель того что нужно распознавать. Например, овал человеческого лица или модель печатных и письменных букв. Заданы определённые допустимые параметры отклонения от этой модели. Благодаря чему современные камеры могут распознавать лица, человеческие улыбки или предметы. Так же в последнее время получила развитие система фиксации движений. На теле человека фиксируются определённые датчики и камеры, установленные в помещении, регистрируют смещение эти датчиков в трехмерной системе координат. Пока что данная технология используется в основном для создания реалистичной анимации действий персонажей в компьютерных играх и в фильмах. Но так же возможно ее использования для управления, например роботизированной хирургической системой. Что полностью исключает риск развития инфекционных осложнений.

· С моделированием в машине других чувств человека проблем нет. Т.к. современные датчики обладают намного более широким диапазоном восприятия, чем человеческий слух или тактильные рецепторы.

2.2 Остальные направления исследований

Еще одним из перспективных направлений являются так называемые многоагентные системы. В данном направлении опять же проводится аналогия с человеческим организмом, в котором существует огромное множество различных клеток, из которых состоят ткани, имеющие определённое функциональное назначение. Виртуально создаются «агенты» т.е. программы, имеющие узкую специализацию и находящиеся во взаимодействии с другими агентами. Например, агенты занимающиеся восприятием видеоинформации. Следующая группа агентов будет заниматься анализом полученных изображений и их классификацией. Другая группа будет делать выводы относительно полученной информации.

Следующим перспективным направлением являются генетические алгоритмы. Данная теория была основана на учении Дарвина об эволюции. Благодаря программированию на основе этих алгоритмов можно научить программы адаптироваться к различным ситуациям. Самостоятельно разрабатывать новые способы решения задач. Причем компьютерам не нужно ждать миллионы лет, чтобы получить результаты. Они могут перебирать все возможные вариации в течение нескольких часов.

Еще одно из приоритетных направлений это экспертные системы. Программа в виде базы данных. Их разработкой обычно занимаются программисты и эксперты в той области, для которой создается данная экспертная система. К примеру, медицинская экспертная система, с помощью неё можно диагностировать заболевания по ряду симптомов. В программу вводится список симптомов, а программа выдает диагноз.

Как же связана психология и науки об обработке информации, такие как информатика, высшая математика, кибернетика. Психология использует методы точных наук в обработке данных исследований и тестирования. А благодаря исследованиям в психологии математики и информатики получили возможность математически или в виде программ и алгоритмов представить процесс человеческого мышления или хотя бы его малую часть.

В программировании широко используются знания логики (силлогизмы Аристотеля) и высшей математики. Помимо моделирования естественных процессов происходящих в организме человека необходимо развитие самих языков, на которых пишутся программы. Нужно разрабатывать новые языки программирования, которые были бы наиболее близки к естественному языку человека. Программирование находится в тесной связи с электротехническими науками. Наподобие радиоаппаратостроения, проектирование линий связи, компьютерная техника и т.д. Ведь чем мощнее будет компьютер, использующий теоретические знания для решения задач тем быстрее и больше этих задач он будет выполнять. А для этого требуется постоянное совершенствование его архитектуры. Еще полвека назад самый мощный из компьютеров занимал целую комнату. Сейчас он уменьшился до размеров книги или блокнота. Из совокупности программирования и электротехнических наук мы получаем компьютер, который может решать сложные задачи. Но ведь решение будет выдаваться только в виде информации. Для того чтобы компьютер на основе полученных решений мог предпринимать какие либо действия необходимо обеспечить его необходимыми для этого инструментами. А это невозможно без достижений машиностроения, механики, гидромеханики, электромеханики и т.д. Таким образом, компьютер становится роботом. Механическим существом, которое на основе анализа полученной информации может воздействовать на окружающую среду. Количество и назначение таких инструментов может быть различным. В Настоящее время проектируются в основном узкоспециализированные роботы и программы.

Например, в микрохирургии существует так называемая система Hip Nav. С помощью этой системы обладающей подобием зрения создается модель анатомического строения органов пациента через небольшое отверстие. А чем меньше рана, тем меньше срок восстановления пациента после операции и меньше вероятность возникновения осложнений. Не все разрабатываемые роботы пока применимы. В США была создана система, которая на основе навигационных данных могла управлять автомобилем. Она была установлена в микроавтобус, проехавший более 4000 км по стране. Разработчики вмешивались только на сложных участках. Профессором Гарвардского университета был создан робот медуза. Причем в данной технологии использовались сердечные клетки крыс, наносившиеся на полимер покрытый белком фиброконектином. Полезность данной разработки в плане практического применения крайне низка. Но в научном плане это показатель того что возможно использование комбинации биологического и небиологического материала.

3. Проблемы создания искусственного интеллекта

3.1 Теоретические и практические проблемы

Вышеперечисленные направления и методы исследования находятся на ранней стадии своего развития и не лишены недостатков и непреодолимых сложностей.

3.1.1 Проблемы нейронных сетей

Нейроны, моделируемые в нейронных сетях, значительно проще устроены, нежели нейроны в человеческом мозге к тому же это всего лишь программы. А создавать искусственные нервные клетки современная наука пока не научилась. Даже если бы это удалось,то воссоздать человеческий мозг все равно бы не получилось потому что его структура крайне сложна. Но если в ближайшие пару сотен лет и это станет возможным, исследователи столкнутся с новой проблемой. Как наделить такой мозг знаниями и опытом? Ведь человеческий мозг развивается благодаря деятельности человека на протяжении всей его жизни. У искусственных нейронных сетей также существуют проблемы. Есть необъяснимая до сих пор проблема так называемого паралича сети. Происходит своеобразная аритмия сигналов поступающих с нейронов, в результате чего все нейроны начинают вырабатывать ошибочные сигналы. Ошибка в сигнале одного нейрона выводит из строя всю сеть. искусственный интеллект электронный

В последнее время набирает обороты такое направление в медицине как «роботизированные протезы». Это направление наглядно показывает, как сложно совмещать живое и неживое. Искусственные конечности, несомненно, улучшают жизнь людей получивших травму. Но они гораздо медленнее настоящих конечностей. Все из-за того что сигнал для управления такими конечностями поступает от остатков нервных окончаний мышцы в потерянной конечности. Обработка и регистрация такого импульса занимает намного больше времени, как если бы было возможно проводить сигнал к такому протезу напрямую от двигательного ядра в головном мозге. Но человеческая иммунная система отвергает всякое вмешательство в организм. Так что синтез живого и неживого пока затруднен.

3.1.2 Проблемы экспертных систем

Главной проблемой эти систем является то, что они применимы только в узкой области. Они не могут объяснить причин своего решения т.к. руководствуются сводом правил для выработки решения.

Им требуется постоянное обновление. А вмешательство в такую систему обычно требует её полного пересмотра. Без обновлений такая система быстро теряет свою актуальность. Для обновления требуется большое количество времени работы двух специалистов. Эксперта в той области, по которой создается экспертная система и программиста. Так же далеко не всегда подобная система способна заменить многолетний человеческий опыт.

3.1.3 Проблемы много-агентных систем

Для управления большим количеством агентов в таких системах планировалось использовать децентрализованный искусственный разум. Т.е. это несколько групп агентов каждая, из которых управляется отдельным центром. Возникла проблема несогласованности действий этих центров, в результате чего вся система быстро выходит из строя. Что ставит под сомнение дальнейшее развитие этой области.

3.1.4 Проблемы генетических алгоритмов

К проблемам этого направления исследований можно отнести не применимость в современном обществе таких понятий как естественный отбор, или выживание сильнейшего. Если ИИ на основе такого алгоритма решит что он доминирующий вид человечество может оказаться на грани вымирания.

3.1.5 Проблемы моделей представления знаний

Данные модели нужны для того что бы организовать связь между окружающей средой и компьютером. Компьютер работает с точными величинами, а окружающая среда таковой не является.

Если решить все эти проблемы и совместить разработки все направлений то можно получить систему, подходящую под определение искусственный интеллект. С это системой можно будет разговаривать задавать ей вопросы. Но она будет всего лишь машиной которая создает очень качественную иллюзию того что она обладает разумом.

3.2 Психологические проблемы

Одной из основных психологических проблем, которая существует в разрабатываемых интеллектуальных системах это наделение таких систем само отношением, самоанализом, самооценкой. Данной системе нужно каким-либо образом дать понять, что она существует. До сих пор никаких продвижений в этом вопросе нет.

Во вторых, чтобы система считалась интеллектуальной, она должна обладать мотивацией. Такие системы должны уметь сами ставить себе цели и способы их достижения. Таким образом система претендующая на звание интеллектуальной должна обладать способностью к самоанализу для того чтобы иметь возможность выявлять мотивы к своей деятельности для постановки целей и решения задач. На сегодняшний день существуют лишь гипотетические способы создания таких систем в виде многопроцессорных пространств, в которых информация накапливается и используется с помощью определённого свода правил.

Если рассматривать системы искусственного интеллекта с точки зрения бихевиоризма то именно этому направлению они наиболее соответствуют сегодняшний день. По идее этого направлению человеческое поведение определяется по типу стимул - реакция, а связь между ними может подкрепляться. В современных интеллектуальных системах конечно реакция на стимул подкрепляться не может но, тем не менее, это остается «совокупностью заранее уготованных движений» как говорил Эдвард Торндайк. Необходимо переходить к модели которую предложил в 1948 году Толмен, поставив между стимулом и реакцией психические процессы данного индивидуума зависящие от множества факторов.

3.3 Этические проблемы

Человечеству свойственно саморазрушение. Многие научные «новинки» принесли изначально очень много бед, прежде чем их научились использовать во благо. Взять, к примеру, теорию Эйнштейна, благодаря которой было создано ядерное оружие. Лишь испытав это оружие, человечество осознало, какой вред оно может нанести. Еще один пример двигатели внутреннего сгорания. На сегодняшний день миллиарды машин с таким типом двигателя отравляют окружающую среду. Стоит задуматься, к чему приведет человечество создание искусственного разума. Авторы книги «Искусственный интеллект. Современный подход» Рассел С. и Норвинг П. выделяют ряд проблем, которые могут возникнуть в результате создания искусственного интеллекта.

1) «В результате автоматизации может увеличиться количество безработных»

Существует мнение, что в результате автоматизации некоторых производственных линий становится меньше рабочих мест. Но существуют такие специальности, которые как раз и появились благодаря созданию автоматизированных линий производства. (Системные администраторы, программисты). Применение ручного труда в некоторых видах деятельности обходится неоправданно дорого.

2) «Может уменьшиться (или увеличиться) количество свободного времени, имеющегося в распоряжении людей»

С одной стороны может показаться, что если за человека все будет выполнять автоматическая разумная система, ему нечем будет заниматься. В настоящий момент такая тенденция не подтверждается. Современные интеллектуальные системы снимают с человека часть нагрузки. Например, режим автопилота и GPS навигации в современных авиалайнерах. Без него пилотам приходилось бы в ручную рассчитывать курс самолета и его местоположение, а так же поддерживать высоту и направление полета. Это приводило бы к крайней степени утомляемости и к увеличению риска авиакатастрофы.

3) «Люди могут потерять чувство собственной уникальности»

Некоторые авторы считали, что по теории искусственного интеллекта люди представляют собой автоматы, а эта идея приводит к потере самостоятельности или даже человечности. Стоит отменить, что эта идея существовала задолго до появления теории искусственного интеллекта.

4) «Люди могут потерять некоторые из своих прав на личную жизнь»

Развитие технологии распознавания речи может привести к широкому распространению средств прослушивания телефонных разговоров и поэтому потере гражданских свобод. Однако подобные технологии могут так же принести и пользу в предотвращении террористических актов и преступлений.

5) «Использование систем искусственного интеллекта может привести к тому, что люди станут более безответственными»

Люди станут опираться больше не на свои профессиональные навыки, таланты и достижения, а на мнение каких либо экспертных систем. К примеру, медицинская экспертная система рекомендует консервативное лечение пациенту с определённое патологией вопреки мнению специалиста с 20 стажем, который уверен, что оперативное вмешательство в данной ситуации необходимо.

6) «Успех искусственного интеллекта может стать началом конца человеческой расы»

«Почти любая технология, попадая в злонамеренные руки, обнаруживает потенциальные возможности для причинения вреда, но когда речь идет об искусственном интеллекте и робототехнике, возникает новая проблема, связанная с тем, что эти злонамеренные руки могут принадлежать самой технологии. Существует множество научно-фантастических произведений на данную тему. (Трилогии «Терминатор» и « Матрица»). Роботы воплощают в себе нечто неизвестное, точно так же, как ведьмы и приведения в сказках которыми пугали людей в более ранние эпохи. Но действительно ли роботы создают реальную угрозу. Люди иногда используют интеллект в агрессивных формах, поскольку они обладают некоторыми агрессивными врожденными тенденциями обусловленными естественным отбором. Но машины не нуждаются в этом, если только сами люди не захотят спроектировать их для этих целей»

Заключение

Становление области искусственного интеллекта началось еще во времена античных философов и мыслителей, хотя они и не могли знать об этом. Именно благодаря этим деятелям современные учёные могут создавать то, что раньше казалось невозможным. Все начиналось с того что человек просто хотел автоматизировать простые виды своей деятельности. В дальнейшем деятельность, которую хотелось бы автоматизировать, становилась все сложнее. И так постепенно дошло то автоматизации самого человека.

В настоящее время происходит внедрение различных наработок в области искусственного интеллекта в различные сферы деятельности человека. Все методы по разработке можно разделить на две группы это классические методы и альтернативные. Это свидетельствует о том, что разработки в этой области не стоят на месте. Со временем таких наработок будет становиться все больше и больше и в конечном итоге, мы будем воспринимать их как должное. Ведь когда то мобильные телефоны, автоматические спутники и системы навигации считались научной фантастикой. Современные научно-технические достижения позволяют создавать узкоспециализированные интеллектуальные системы, интеллектуальных компьютерных персонажей в компьютерных играх. Но все это не является искусственным интеллектом, а всего лишь одно из его направлений. Сложность заключается в том что все направления работают над тем чтобы создать иллюзию того что тот же компьютерный персонаж обладает разумом.

Проблемы в создании чего - либо совершенного нового были всегда. Но все они решаемы, так или иначе. Основной проблемой является разрозненность разработок в области искусственного интеллекта и недостаточная изученность человеческого разума и нервной системы. Направлений очень много, но все они создают лишь имитацию разума. Природа предоставила там своеобразный шаблон (человеческий мозг). К сожалению, современная наука до сих пор полностью не разобралась во всех механизмах его работы. А создавать то в механизмах работы чего не полностью осведомлен очень малоэффективно.

Список литературы

1. Айзенк Г.Ю. понятие и определение интеллекта // Вопросы психологии.- 1995. - № 1. - С.111-131.

2. Рассел С. Искусственный интеллект. Современный подход. / С. Рассел, П. Норвинг. - М; СПб; К.: Вильямс, 2006. - 1408 с.

3. Смолин Д.В. Введение в искусственный интеллект: конспект лекций. - М.: 2004. -208 с.

4. Э.Хант. Искусственный интеллект. - М.: МИР, 1978. - 281 с.

5. Д. Хокинс. Об интеллекте/ Д. Хокинс, Б. Сандра. - М;СПб;К.: Вильямс, 2004. - 240 с.

Размещено на Allbest.ru

...

Подобные документы

    Исторический обзор развития работ в области искусственного интеллекта. Создание алгоритмического и программного обеспечения вычислительных машин, позволяющего решать интеллектуальные задачи не хуже человека. От логических игр до медицинской диагностики.

    реферат , добавлен 26.10.2009

    Сущность и проблемы определения искусственного интеллекта, его основных задач и функций. Философские проблемы создания искусственного интеллекта и обеспечения безопасности человека при работе с роботом. Выбор пути создания искусственного интеллекта.

    контрольная работа , добавлен 07.12.2009

    Понятие искусственного интеллекта как свойства автоматических систем брать на себя отдельные функции интеллекта человека. Экспертные системы в области медицины. Различные подходы к построению систем искусственного интеллекта. Создание нейронных сетей.

    презентация , добавлен 28.05.2015

    История создания и основные направления в моделировании искусственного интеллекта. Проблемы обучения зрительному восприятию и распознаванию. Разработка элементов интеллекта роботов. Исследования в области нейронных сетей. Принцип обратной связи Винера.

    реферат , добавлен 20.11.2009

    Характеристика сущности искусственного интеллекта. Проблема создания искусственного интеллекта. Базовые положения, методики и подходы построения систем ИИ (логический, структурный, эволюционный, имитационный). Проблемы создания и реализация систем ИИ.

    реферат , добавлен 19.07.2010

    Классификация ЭВМ: по принципу действия, этапам создания, назначению, размерам и функциональным возможностям. Основные виды электронно-вычислительных машин: суперЭВМ, большие ЭВМ, малые ЭВМ, МикроЭВМ, серверы.

    реферат , добавлен 15.03.2004

    Ранние приспособления и устройства для счета. Появление перфокарт, первые программируемые машины, настольные калькуляторы. Работы Джона Фон Неймана по теории вычислительных машин. История создания и развития, поколения электронно-вычислительных машин.

    реферат , добавлен 01.04.2014

    Начало современного этапа развития систем искусственного интеллекта. Особенности взаимодействия с компьютером. Цель когнитивного моделирования. Перспективы основных направлений современного развития нейрокомпьютерных технологий, моделирование интеллекта.

    реферат , добавлен 05.01.2010

    Сущность искусственного интеллекта, сферы человеческой деятельности, в которых он распространен. История и этапы развития данного явления. Первые идеи и их воплощение. Законы робототехники. Использование искусственного интеллекта в коммерческих целях.

    реферат , добавлен 17.08.2015

    Искусственный интеллект – научное направление, связанное с машинным моделированием человеческих интеллектуальных функций. Черты искусственного интеллекта Развитие искусственного интеллекта, перспективные направления в его исследовании и моделировании.



Рассказать друзьям