Тепловая смерть вселенной простым языком. Грозит ли нам тепловая смерть Вселенной? Смотреть что такое "Тепловая смерть Вселенной" в других словарях

💖 Нравится? Поделись с друзьями ссылкой

Попытку распространить законы термодинамики на Вселенную в целом предпринял Р.Клаузиус , выдвинувший следующие постулаты.

- Энергия Вселенной всегда постоянна, то есть Вселенная – это замкнутая система.

- Энтропия Вселенной всегда возрастает.

Если мы примем второй постулат, то нам надо признать, что все процессы во Вселенной направлены на достижение состояния термодинамического равновесия, характеризуемого максимумом энтропии, что означает наибольшую степень хаоса, дезорганизации, энергетическое уравновешивание. В этом случае во Вселенной наступает тепловая смерть и никакой полезной работы, никаких новых процессов или образований в ней производиться не будет (не будут светить звезды, образовываться новые звезды и планеты, остановится эволюция вселенной).

С этой мрачной перспективой были не согласны многие ученые, предполагавшие, что наряду с энтропийными процессами во Вселенной должны происходить и антиэнтропийные процессы, которые препятствуют тепловой смерти Вселенной.

Среди таких ученых был и Л.Больцман, который предположил, что для небольшого числа частиц второйзакон термодинамики не должен применяться , ибо в этом случае нельзя говорить о состоянии равновесия системы. При этом наша часть Вселенной должна рассматриваться как небольшая часть бесконечной Вселенной. А для такой небольшой области допустимы небольшие флуктуационные (случайные) отклонения от общего равновесия, благодаря чему в целом исчезает необратимая эволюция нашей части Вселенной в направлении к хаосу. Во Вселенной имеются относительно небольшие участки, порядка нашей звездной системы, которые в течение относительно небольших промежутков времени значительно отклоняются от теплового равновесия. В этих участках имеет место эволюция, то есть развитие, усовершенствование, нарушение симметрии.

В середине ХХ века новая неравновесная термодинамика, или термодинамика открытых систем , или синергетика где место закрытой изолированной системы заняло фундаментальное понятие открытой системы. Основателями этой новой науки было И.Р.Пригожин (1917-2004) и Г.Хакен (1927).

Открытая система – это система, которая обменивается с окружающей средой веществом, энергией или информацией.

Открытая система тоже производит энтропию, как и закрытая, но в отличие от закрытой, эта энтропия не накапливается в открытой системе, а выводится в окружающую среду. Использованная отработанная энергия (энергия низшего качества – тепловая при низкой температуре) рассеивается в окружающей среде и взамен ее из среды извлекается новая энергия (высокого качества, способная переходить из одной формы в другою), способная производить полезную работу.

Возникающие для этих целей материальные структуры, способные рассеивать использованную энергию и поглощать свежую, называются диссипативными . В результате такого взаимодействия система извлекает порядок из окружающей среды, одновременно внося беспорядок в эту среду. С поступлением новой энергии, вещества или информации неравновесность в системе возрастает. Прежняя взаимосвязь между элементами системы, которая определяла ее структуру, разрушается. Между элементами системы возникают новые связи, приводящие к кооперативным процессам, то есть к коллективному поведению элементов. Так схематически можно описать процессы самоорганизации в открытых системах.

В качестве примера такой системы можно взять работу лазера , с помощью которого получают мощные оптические излучения. Хаотические колебательные движения частиц такого излучения, благодаря поступлению определенной порции энергии извне производят согласованные движения. Частицы излучения начинают колебаться в одинаковой фазе, вследствие чего мощность лазерного излучения много кратно увеличивается, несоизмеримо с количеством подкаченной энергии.

Изучая процессы, происходящие в лазере, немецкий физик Г.Хакен (р.1927) назвал новое направление синергетикой, что в переводе с древнегреческого означает “совместное действие”, “взаимодействие”.

Еще одним известным примером самоорганизации могут служить химические реакции, которые изучал И.Пригожин. Самоорганизация в этих реакциях связана с поступлением в систему извне веществ, обеспечивающих эти реакции (реагентов), с одной стороны, и выведением в окружающую среду продуктов реакции, с другой стороны. Внешне такая самоорганизация может проявиться в виде периодически появляющихся концентрических волн или в периодическом изменении цвета реагируемого раствора. Подобную химическую реакцию получил и исследовал известный бельгийский химик русского происхождения И.Р.Пригожин. Свою химическую реакцию Пригожин назвал «Брюсселятор» в честь города Брюсселя, где Пригожин жил и работал, и где была впервые поставлена эта реакция.

Вот как писал об этом сам Пригожин: “Предположим, что у нас имеются молекулы двух сортов: “красные” и “синие”. Из-за хаотического движения молекул можно было бы ожидать, что в какой-то момент в левой части сосуда окажется больше “красных” молекул, а в следующий момент больше станет “синих” молекул и т.д. Цвет смеси с трудом поддается описанию: фиолетовый с беспорядочными переходами в синий и красный. Иную картину мы увидим, разглядывая химические часы: вся реакционная смесь будет иметь синий цвет, затем ее цвет резко изменится на красный, потом снова на синий и т.д. Смена окраски происходит через правильные интервалы времени. Для того чтобы одновременно изменить свой цвет, молекулы должны каким-то образом поддерживать связь между собой. Система должна вести себя как единое целое” (Пригожин И., Стенгерс И. Порядок из хаоса. М., 1986. С.202-203).

Конечно же, никакого «сговора» между молекулами в прямом смысле этого слова нет и быть не могло. Дело в том, что в определенный момент времени все молекулы начинали колебаться в одной фазе – синего цвета, и тогда вся смесь приобретала синий цвет. Через определенный промежуток времени молекулы начинали колебаться в другой фазе – фазе красного цвета, и тогда вся смесь приобретала красный цвет и т.д., пока не заканчивалось действие реагента.

Приведем другой пример. Если взять цирковой прозрачный барабан с синими и красными шариками и начать его вращать с определенной частотой – частотой красного цвета, то мы, как и в случае с молекулами, обнаружим, что все шарики стали красными. Если мы сменим частоту вращения барабана на соответствующую синей длине волны, то увидим, что шарики посинели и т.д.

Наиболее показательным примером самоорганизации могут служить ячейки Бенара . Это маленькие шестигранные структуры, которые могут, к примеру, образоваться в слое масла на сковородке при соответствующем перепаде температур. Как только температурный режим меняется ячейки распадаются.

Таким образом, чтобы самопроизвольно выстроилась новая структура, необходимо задать соответствующие параметры среды.

Управляющие параметры – это параметры среды, которые создают граничные условия, в рамках которых существует данная открытая система (это может быть температурный режим, соответствующая концентрация веществ, частота вращения и т.п.).

Параметры порядка – это «ответ» системы на изменение управляющих параметров (перестройка системы).

Очевидно, что процесс самоорганизации может начаться не в любой системе и не при любых условиях. Рассмотрим условия, при которых может начаться процесс самоорганизации.

Необходимыми условиями для возникновения самоорганизации в различных системах являются следующие:

1. Система должна быть открытой , потому что закрытая система, в конечном счете, должна прийти в состояние максимального беспорядка, хаоса, дезорганизации в соответствии со 2 законом термодинамики;

2. Открытая система должна находиться достаточно далеко от точкитермодинамического равновесия . Если система уже находится вблизи от этой точки, то она неизбежно приблизится к ней и, в конце концов, придет в состояние полного хаоса и дезорганизации. Ибо точка термодинамического равновесия является сильным аттрактором;

3. Фундаментальным принципом самоорганизации служит «возникновение порядка через флуктуации» (И.Пригожин). Флуктуации или случайные отклонения системы от некоторого среднего положения в начале подавляются и ликвидируются системой. Однако, в открытых системах, благодаря усилению неравновесности, эти отклонения со временем возрастают, усиливаются и, в конце концов, приводят к “расшатыванию” прежнего порядка, к хаотизации системы. В состоянии неустойчивости, нестабильности система будет особенно чувствительна к начальным условиям, чувствительна к флуктуациям. В этот момент какая-то флуктуация прорывается с макроуровня системы на ее микроуровень и осуществляет выбор дальнейшего пути развития системы, дальнейшей ее перестройки. Предсказать, как поведет себя система в состоянии нестабильности, какой выбор будет ей сделан в принципе невозможно. Этот процесс характеризуется как принцип «возникновения порядка через флуктуации». Флуктуации носят случайный характер. Поэтому становится ясным, что появление нового в мире связано с действием случайных факторов.

Например, тоталитарное общество в Советском Союзе являлось прочной социальной структурой. Однако, поступающая из-за рубежа информация о жизни других обществ, торговля (обмен товарами) и т.п. стали вызывать в тоталитарном обществе отклонения в виде свободомыслия, недовольства, диссидентства и т.п. Вначале структура тоталитарного общества была в состоянии подавлять эти флуктуации, но их становилось все больше, и сила их нарастала, что привело к расшатыванию и развалу старой тоталитарной структуры и замене ее новой.

И еще один шуточный пример: Сказка про репку. Посадил дед репку. Выросла репка большая пребольшая. Настало время ее вытаскивать из земли. Дед тащил, тащил репку, но вытащить ее так и не смог. Слишком еще устойчивая система наша репка. Позвал дед на помощь бабку. Тащили они, тащили репку вместе, но вытащить так и не смогли. Флуктуации, расшатывающие репку усиливаются, но их пока еще не достаточно, чтобы разрушить систему (репку). Позвали они внучку, но тоже репку не вытащили. Затем позвали собаку Жучку, и, наконец, позвали мышку. Казалось бы, какое усилие могла сделать мышка, но она явилась «последней каплей», которая привела к качественно новому изменению системы – ее развалу (репка была вытащена из земли). Мышку можно назвать непредсказуемой случайностью, которая сыграла решающую роль, или «малой причиной больших событий»;

4. Возникновение самоорганизации опирается на положительную обратную связь . Согласно принципу положительной обратной связи, изменения, появляющиеся в системе не устраняются, а усиливаются, накапливаются, что приводит, в конце концов, к дестабилизации, расшатыванию старой структуры и замене ее на новую;

5. Процессы самоорганизации сопровождаются нарушениемсимметрии . Симметрия означает устойчивость, неизменность. Самоорганизация же предполагает асимметрию, то есть развитие, эволюцию;

6. Самоорганизация может начаться лишь в больших системах, обладающих достаточным количеством взаимодействующих между собой элементов (10 10 -10 14 элементов), то есть в системах, имеющих некоторые критические параметры . Для каждой конкретной самоорганизующейся системы эти критические параметры свои.


Лекция № 14. Основные понятия синергетики. Возможностьуправления синергетическими системами.

Взрывные, катастрофические процессы были известны человечеству издавна. Скажем, человек, путешествующий по горам знал, на основе своего эмпирического опыта, что горная лавина может обрушиться внезапно, чуть ли не от дуновения ветра или неудачно сделанного шага.

Революции и катаклизмы часто представляли собой следствия последней капли народного недовольства, последнего случайного события переполнившего чашу весов. Это были типичные малые причины больших событий.

Каждый из нас может вспомнить определенные ситуации выбора, которые стояли на жизненном пути, и в решающие жизненные моменты перед нами открывалось несколько возможностей. Все мы включены в механизмы, где в критический момент, момент перелома решающий выбор определяет случайное событие. Итак, лавинообразные процессы, социальные катаклизмы и потрясения, критические ситуации выбора на жизненном пути каждого человека.. . Можно ли подвести единую научную основу под все эти, казалось бы различные, факты? Последние 30 лет закладывается фундамент такой универсальной научной модели, которая получила название синергетики.

Как мы уже видели, синергетика основана на идеях системности,целостного подхода к миру, нелинейности (то есть много вариантности), необратимости , глубинной взаимосвязи хаоса и порядка . Синергетика дает нам образ сложноорганизованного мира , который является не ставшим, а становящимся, не просто существующим, а непрерывно возникающим . Этот мир развивается по нелинейным законам , он полон неожиданных , непредсказуемых поворотов, связанных с выбором дальнейшего пути развития.

Предметом синергетики являются механизмы самоорганизации . Это механизмы образования и разрушения структур, механизмы, обеспечивающие переход от хаоса к порядку и обратно. Эти механизмы не зависят от конкретной природы элементов систем. Они присущи неживому миру и природе, человеку и социуму. Синергетику поэтому считают междисциплинарным направлением научного исследования.

Синергетика, как и любая другая наука, имеет свой собственный язык, свою систему понятий. Это такие понятия как “аттрактор”, “бифуркация”, “фрактальный объект”, “детерминированный хаос” и другие. Понятия эти должны стать доступными для каждого образованного человека, тем более что им можно найти соответствующие аналоги в науке и культуре.

Основными понятиями синергетики являются понятия «хаоса» и «порядка».

Порядок – это множество элементов любой природы, между которыми существуют устойчивые (регулярные) отношения, повторяющиеся в пространстве и во времени. Например, строй солдат, марширующих на параде.

Хаос – множество элементов, между которыми нет устойчивых повторяющихся отношений. Например, бегущая в панике толпа людей.

Понятие “аттрактор” близко к понятию цели. Это понятие можно раскрыть как целеподобность, как направленность поведения системы, как устойчивое относительно конечное ее состояние. В синергетике под аттрактором понимают относительно устойчивое состояние системы, которое как бы притягиваетк себе всемногообразие траекторий системы , определяемых разными начальными условиями. Если система попадает в конус аттрактора, то она неизбежно эволюционирует к этому относительно устойчивому состоянию. Например, независимо от начального положения мяча, он скатится на дно ямы. Состояние покоя мяча на дне ямы – это аттрактор движения мяча.

Аттракторы подразделяются на простые и странные .

Простой аттрактор (аттрактор)- это предельное состояние порядка. Система выстраивает порядок и совершенствует его не до бесконечности, а до уровня, определяемой простым аттрактором.

Странный аттрактор – это предельное состояние хаотизации системы. Система хаотизируется, разваливается тоже не до бесконечности, а до уровня, определяемого странным аттрактором.

Понятие бифуркация в переводе с английского означает вилку с двумя зубцами – befork. Говорят обычно не о самой бифуркации, а о точки бифуркации . Синергетический смысл точкибифуркации таков – это точка ветвлениявозможных путей эволюции системы . Прохождениечерез точки ветвления, совершенный выбор закрывает иные пути и делает тем самымэволюционный процесс необратимым .

Нелинейную систему можно определить как систему, таящую в себе бифуркации.

Очень важным для синергетики является нелинейность . Под нелинейностью понимают:

1. Возможность выбора пути развития системы (подразумевается, что у системы существует не один путь развития, а несколько);

2. Несоизмеримость нашего воздействия на систему и получаемого в ней результата. По пословице «мышь родит гору».

То, что в синергетике называют “бифуркацией ” имеет глубокие аналоги в культуре. Когда сказочный рыцарь стоит, задумавшись у придорожного камня на развилке дорог и выбор пути определит его дальнейшую судьбу, то это и является по существу наглядно-образным представлением бифуркации в жизни человека. Эволюция биологических видов, представленная в виде эволюционного дерева , наглядно иллюстрирует ветвящиеся пути эволюции живой природы.

Введение

1. Понятие Вселенной

2. Проблема тепловой смерти Вселенной

2.2 "За" и "против" теории тепловой смерти

Заключение


Введение

В данной работе мы поговорим о будущем нашей Вселенной. О будущем очень далеком, настолько, что неизвестно, наступит ли оно вообще. Жизнь и развитие науки существенно меняют наши представления и о Вселенной, и об ее эволюции, и о законах, управляющих этой эволюцией. В самом деле, существование черных дыр было предсказано еще в XVIII веке. Но лишь во второй половине XX столетия их стали рассматривать как гравитационные могилы массивных звезд и как места, куда может навечно «провалиться» значительная часть вещества, доступного наблюдениям, выбывая из общего круговорота. А позже стало известно, что черные дыры испаряются и, таким образом, возвращают поглощенное, хотя совсем в другом обличие. Новые идеи постоянно высказываются космофизиками. Поэтому картины, нарисованные еще совсем недавно, неожиданно оказываются устаревшими.

Одним из наиболее дискуссионных вот уже около 100 лет является вопрос о возможности достижения равновесного состояния во Вселенной, что эквивалентно понятию ее «тепловой смерти». В данной работе мы и рассмотрим его.


A что такое Вселенная? Ученые под этим термином понимают максимально большую область пространства, включающую в себя как все доступные для изучения небесные тела и их системы, т.е. как Метагалактику, так и возможное окружение, еще влияющее на характер распределения и движения тел в ее астрономической части.

Известно, что Метагалактика находится в состоянии приблизительно однородного и изотропного расширения. Все галактики удаляются друг от друга со скоростью тем большей, чем больше расстояние между ними. С течением времени скорость этого расширения уменьшается. На расстоянии 15-20 миллиардов световых лет удаление происходит со скоростью, близкой к скорости света. По этой и ряду других причин, мы не можем видеть более далекие объекты. Существует как бы некий «горизонт видимости». Вещество на этом горизонте находится в сверхплотном («сингулярном», т.е. особом) состоянии, в каком оно было в момент условного начала расширения, хотя на этот счет имеются и другие предположения. Из-за конечности скорости распространения света (300000 км/с) мы не можем знать, что происходит на горизонте сейчас, но некоторые теоретические расчеты позволяют думать, что за пределами горизонта видимости вещество распределено в пространстве примерно с той же плотностью, что и внутри него. Именно это и приводит как к однородному расширению, так и к наличию самого горизонта. Поэтому часто Метагалактику не ограничивают видимой частью, а рассматривают как сверхсистему, отождествленную со всей Вселенной в целом, считая ее плотность однородной. В простейших космологических построениях рассматривают два основных варианта поведения Вселенной – неограниченное расширение, при котором средняя плотность вещества с течением времени стремится к нулю, и расширение с остановкой, после которой Метагалактика должна начать сжиматься. В общей теории относительности показывается, что наличие вещества искривляет пространство. В модели, где расширение сменяется сжатием, плотность достаточно высока и кривизна оказывается такой, что пространство «замыкается на себя», подобно поверхности сферы, но в мире с большим, чем «у нас», числом измерений. Наличие горизонта приводит к тому, что даже этот пространственно конечный мир мы не можем видеть целиком. Поэтому с точки зрения наблюдений замкнутый и открытый мир различаются не очень сильно.

Скорее всего, реальный мир устроен сложнее. Многие космологи предполагают, что существует несколько, может быть, даже очень много метагалактик и все они вместе могут представлять какую-то новую систему, являющуюся частью некоторого еще более крупного образования (может быть, принципиально иной природы). Отдельные части этого гипермира (вселенные в узком смысле) могут иметь совершенно различные свойства, могут быть не связаны друг с другом известными нам физическими взаимодействиями (или быть слабо связанными, что имеет место в случае так называемого полузамкнутого мира). В этих частях гипермира могут проявляться иные законы природы, а фундаментальные константы типа скорости света могут иметь другие значения или вообще отсутствуют. Наконец, в таких вселенных может быть не такое, как у нас, число пространственных измерений.


2.1 Второй закон термодинамики

Согласно второму закону (началу) термодинамики, процессы, происходящие в замкнутой системе, всегда стремятся к равновесному состоянию. Иными словами, если нет постоянного притока энергии в систему, идущие в системе процессы стремятся к затуханию и прекращению.

Идея о допустимости и даже необходимости применения второго закона термодинамики ко Вселенной как целому принадлежит В. Томсону (лорду Кельвину), который опубликовал ее еще в 1852 г. Несколько позже Р. Клаузиус сформулировал законы термодинамики в применении ко всему миру в следующем виде: 1. Энергия мира постоянна. 2. Энтропия мира стремится к максимуму.

Максимальная энтропия как термодинамическая характеристика состояния соответствует термодинамическому равновесию. Поэтому обычно интерпретация этого положения сводилась (часто сводится и сейчас) к тому, что все движения в мире должны превратиться в теплоту, все температуры выровняются, плотность в достаточно больших объемах должна стать всюду одинаковой. Это состояние и получило название тепловой смерти Вселенной.

Реальное разнообразие мира (кроме, разве что, распределения плотности на самых больших ныне наблюдаемых масштабах) далеко от нарисованной картины. Но если мир существует вечно, состояние тепловой смерти уже давно должно было бы наступить. Полученное противоречие получило название термодинамического парадокса космологии. Чтобы его ликвидировать, нужно было допустить, что мир существует недостаточно долго. Если говорить о наблюдаемой части Вселенной, а также о ее предполагаемом окружении, то это, по-видимому, так и есть. Мы уже говорили о том, что она находится в состоянии расширения. Возникла она скорее всего в результате взрывообразной флуктуации в первичном вакууме сложной природы (или, можно сказать, в гипермире) 15 или 20 миллиардов лет назад. Астрономические объекты – звезды, галактики – возникли на более поздней стадии расширения из первоначально почти строго однородной плазмы. Однако по отношению к далекому будущему вопрос остается. Что ждет нас или наш мир? Наступит рано или поздно тепловая смерть или же этот вывод теории по каким-то причинам неверен?

2.2 «За» и «против» теории тепловой смерти

Многие выдающиеся физики (Л. Больцман, С. Аррениус и др.) категорически отрицали возможность тепловой смерти. Вместе с тем даже и в наше время не менее крупные ученые уверены в ее неизбежности. Если говорить о противниках, то, за исключением Больцмана, обратившего внимание на роль флуктуаций, их аргументация была скорее эмоциональной. Лишь в тридцатые годы нашего столетия появились серьезные соображения относительно термодинамического будущего мира. Все попытки решения термодинамического парадокса можно сгруппировать в соответствии с тремя основными идеями, положенными в их основу:

1. Можно думать, что второй закон термодинамики неточен или же неверна его интерпретация.

2. Второй закон верен, но неверна или неполна система остальных физических законов.

3. Все законы верны, но неприменимы ко всей Вселенной из-за каких-то ее особенностей.

В той или иной мере все варианты могут быть использованы и действительно используются, хотя с разным успехом, для опровержения вывода о возможной тепловой смерти Вселенной в сколь угодно удаленном будущем. По поводу первого пункта заметим, что в «Термодинамике» К.А. Путилова (М., Наука, 1981) приводится 17 различных определений энтропии, не все из которых эквивалентны. Мы скажем лишь, что если иметь в виду статистическое определение, учитывающее наличие флуктуаций (Больцман), второй закон в формулировке Клаузиуса и Томсона действительно оказывается неточным.

Закон возрастания энтропии, оказывается, имеет не абсолютный характер. Стремление к равновесию подчинено вероятностным законам. Энтропия получила математическое выражение в виде вероятности состояния. Таким образом, после достижения конечного состояния, которое до сих пор предполагалось соответствующим максимальной энтропии Smax, система будет находиться в нем более продолжительное время, чем в других состояниях, хотя последние неизбежно будут наступать из-за случайных флуктуаций. При этом крупные отклонения от термодинамического равновесия будут значительно более редкими, чем небольшие. На самом деле состояние с максимальной энтропией достижимо только в идеале. Эйнштейн отметил, что «термодинамическое равновесие, строго говоря, не существует». Из-за флуктуаций энтропия будет колебаться в каких-то небольших пределах, всегда ниже Smax. Ее среднее значение будет соответствовать больцмановскому статистическому равновесию. Таким образом, вместо тепловой смерти можно было бы говорить о переходе системы в некоторое «наиболее вероятное», но все же конечное статистически равновесное состояние. Считается, что термодинамическое и статистическое равновесие – практически одно и то же. Это ошибочное мнение опроверг Ф.А. Цицин, показавший, что различие в действительности весьма велико, хотя о конкретных значениях разницы мы здесь говорить не можем. Важно, что любая система (например, идеальный газ в сосуде) рано или поздно будет иметь не максимальное значение энтропии, а скорее , соответствующее, как будто, сравнительно малой вероятности. Но здесь дело в том, что энтропию имеет не одно состояние, а громадная их совокупность, которую лишь по небрежности называют единым состоянием. Каждое из состояний с имеет и в самом деле малую вероятность осуществления, и поэтому в каждом из них система не задерживается долго. Но для их полного набора вероятность получается большой. Поэтому совокупность частиц газа, достигнув состояния с энтропией, близкой к , должна довольно быстро перейти в какое-то другое состояние с примерно той же энтропией, затем в следующее и т.д. И хотя в состоянии, близком к Smax, газ будет проводить больше времени, чем в любом из состояний с , последние вместе взятые становятся более предпочтительными.

Ограничение области знания лишь небольшой группой людей ослабляет философский дух народа и ведет к духовному обнищанию.

А. Эйнштейн

Классическая термодинамика оказалась не способной решить и космологические проблемы характера протекания процессов, происходящих во Вселенной. Уильям Томпсон экстраполировал принцип возрастания энтропии на крупномасштабные процессы, протекающие в природе. На основе этого Р. Клаузиус распространил этот принцип на Вселенную в целом, что привело его к гипотезе о "тепловой смерти Вселенной". Все физические процессы, согласно второму началу термодинамики, протекают в направлении передачи тепла от более горячих тел к менее горячим. Это означает, что медленно, но верно идет процесс выравнивания температуры во Вселенной. Следовательно, будущее вырисовывается перед нами в достаточно трагических тонах:

ожидается исчезновение температурных различий в природе и превращение всей мировой энергии в теплоту, равномерно распределенную во Вселенной. Отсюда Клаузиус выдвинул два постулата:

    Энергия Вселенной всегда постоянна.

    Энтропия Вселенной всегда растет к максимуму.

Если принять второй постулат, то необходимо признать, что процессы во Вселенной направлены в сторону достижения состояния термодинамического равновесия, соответствующего максимуму энтропии, а следовательно, состояния, характеризуемого наибольшей степенью хаоса, беспорядка и дезорганизации. В таком случае во Вселенной наступит тепловая смерть и никакой полезной работы в ней произвести будет нельзя.

Вытекающий отсюда вывод о грядущей тепловой смерти Вселенной, означает прекращение каких-либо физических процессов вследствие перехода Вселенной в равновесное состояние с максимальной энтропией. На протяжении всего дальнейшего развития этот вывод привлекает внимание ученых, ибо затрагивает не только глубинные проблемы чисто научного характера, но также философско-мировоззренческие аспекты, указывающие определенную верхнюю границу возможного существования человечества. Такие мрачные прогнозы встретили критику со стороны ряда выдающихся ученых. Однако в середине XIX в. мало было научных аргументов для опровержения мнения Р. Клаузиуса. Только единицы догадывались, что понятие закрытой, или изолированной, системы является далеко идущей абстракцией, не отражающей реальный характер систем, которые встречаются в природе.

С научной точки зрения возникают проблемы правомерности следующих экстраполяций, высказанных Клаузиусом:

    Вселенная рассматривается как замкнутая система.

    Эволюция мира может быть описана как смена его состояний.

    Для мира как целого состояние с максимальной энтропией имеет смысл, как и для любой конечной системы.

Проблемы эти представляют несомненную трудность и для современной физической теории. Решение их следует искать в общей теории относительности и развивающейся на ее основе современной космологии. Многие теоретики считают, что в общей теории относительности мир как целое должен рассматриваться не как замкнутая система, а как система, находящаяся в переменном гравитационном поле. В связи с этим применение закона возрастания энтропии не приводит к выводу о необходимости в нем статистического равновесия.

Проблему будущего развития Вселенной пытался разрешить и Больцман, применивший к замкнутой Вселенной понятие флуктуации. Под флуктуацией какой-то физической величины понимается отклонение истинного значения данной величины от ее среднего значения, обусловленного, например, хаотическим тепловым движением частиц системы. Больцман принял ограничение Максвелла, согласно которому для небольшого числа частиц второе начало термодинамики не должно применяться, ибо в случае небольшого числа молекул нельзя говорить о состоянии равновесия системы. При этом он использует это ограничение для Вселенной, рассматривая видимую часть Вселенной как небольшую область бесконечной Вселенной. Для такой небольшой области допустимы небольшие флуктуационные отклонения от равновесия, благодаря чему в целом исчезает необратимая эволюция Вселенной в направлении к хаосу.

К сожалению, мечта Больцмана не сбылась в полной мере. Ему не удалось найти ключ к объединению динамики и второго начала термодинамики, а предлагаемая флуктуационная модель эволюции Вселенной имела всего лишь характер гипотезы. Скептическое отношение многих ученых к атомистической теории Больцмана (сам он был убежден в том, что отстаиваемое им учение об атомах завоюет признание через много десятков лет), трудности с определением роли второго начала термодинамики в системе естествознания, а возможно, и ряд других причин привели этого замечательного ученого к трагическому концу. В 1906 году он покончил жизнь самоубийством.

XX век вносит коррективы в изучение проблем эволюции Вселенной. Формируется новое междисциплинарное направление - синергетика, и на его основе возникает теория самоорганизации сложных систем. В отличие от закрытых, или изолированных, реальными системами в природе являются открытые системы. Они обмениваются с окружающей средой энергией, веществом и информацией. Опыт и практическая деятельность свидетельствовали, что понятие закрытой, или изолированной, системы представляет собой далеко идущую абстракцию и потому она слишком упрощает и углубляет действительность, поскольку в ней трудно или даже невозможно найти системы, которые бы не взаимодействовали с окружающей средой. Поэтому в новой термодинамике место закрытой изолированной системы заняло принципиально иное фундаментальное понятие открытой системы, которая способна обмениваться с окружающей средой веществом, энергией и информацией.

Открытая система не может быть равновесной, потому что ее функционирование требует непрерывного поступления из внешней среды энергии или вещества, богатого энергией. В результате такого взаимодействия система, как указывал Эрвин Шредингер, извлекает порядок из окружающей среды и тем самым вносит беспорядок в эту среду. В открытых системах также производится энтропия, поскольку в них происходят необратимые процессы, но энтропия в этих системах не накапливается, как в закрытых системах, а выводится в окружающую среду. Поскольку энтропия характеризует степень беспорядка в системе, постольку можно сказать, что открытые системы живут за счет заимствования энергии или вещества из внешней среды. Очевидно, что с поступлением новой энергии или вещества неравновесность в системе возрастает. В конечном счете прежняя взаимосвязь между элементами системы, которая определяет ее структуру, разрушается. Между элементами системы возникают новые связи, которые приводят к кооперативным процессам, т. е. к коллективному поведению ее элементов. Так, схематически могут быть охарактеризованы процессы самоорганизации открытых систем.

Как отмечает основоположник теории самоорганизации И. Р. Пригожин, переход от термодинамики равновесных состояний к термодинамике неравновесных процессов, несомненно, знаменует прогресс в развитии ряда областей науки.

ВЫВОДЫ

1. Детерминизм - это учение о всеобщей закономерной связи явлений и процессов в окружающем мире. Причинность является одной из форм проявления детерминизма. Исторически в науке сложились два основных типа причинно-следственных связей и соответственно два типа закономерностей - динами ческие и статистические (вероятностные).

2. Современную концепцию детерминизма можно сформиро вать следующим образом: динамические законы представляют собой первый, низший этап в процессе познания окружающего нас мира; статистические законы более совершенно отображают объективные связи в природе: они являются следующим, более высоким этапом познания.

3. Наиболее ярко динамический и статистический де терминизм проявляется при рассмотрении тепловых про цессов. Динамический подход характерен термодинамике. Молекулярно-кинетическая теория использует статистичес кий метод, интересуясь не движением отдельных молекул, а только средними величинами, которые характеризуют дви жение огромной совокупности частиц. Поэтому при изучении тепловых явлений в науке используют два направления: статистические законы и термодинамические законы, изуча ющие тепловые процессы без учета молекулярного строения вещества.

4. Если к системе подводится тепло и над ней производится работа, то энергия системы возрастает до величины, равной сумме этих величин. Невозможно осуществить процесс, единс твенным результатом которого было бы превращение тепла в работу при постоянной температуре. Тепло не может перетечь самопроизвольно от холодного тела к горячему.

    Энтропия есть мера неупорядоченности системы. Энтропия замкнутой системы, т. е. системы, которая не обменивается с окружением ни энергией, ни веществом, постоянно возрастает.

    Основываясь на связи энтропии с вероятностью, Больцман сформулировал, что природа стремится перейти из состояния менее вероятного в состояние более вероятное. Энтропия системы, находящейся в равновесном состоянии, максимальна и постоянна.

    Второе начало термодинамики устанавливает в природе наличие фундаментальных асимметрий, т. е. однонаправленности всех происходящих самопроизвольных процессов. Об этой асимметрии, выделенной Клаузиусом и Кельвином, говорят все окружающие нас явления. Хотя количество энергии в замкнутых системах сохраняется, распределение энергии меняется необратимым способом. Распространение принципа возрастания энтропии на всю Вселенную привело Клаузиуса и Кельвина к гипотезе "тепловой смерти Вселенной".

    Большинство систем являются открытыми, т. е. обменивающимися энергией или веществом с окружающей средой, поэтому понятие термодинамики расширялись для открытых систем. Энтропия в открытых системах может возникать и переноситься.

    В стационарных неравновесных состояниях производится минимальная величина энтропии, что отражает внутреннюю инерцию и устойчивость систем, поэтому, если какие-то внешние условия не позволяют системе перейти в устойчивое равновесие, она перейдет в стационарное с минимальным производством энтропии - теорема Пригожина.

Вопросы для контроля знаний

    Чем отличаются универсальные законы от статистических?

    Почему лапласовский детерминизм оказался несостоятельным?

    Почему причинность не совпадает с детерминизмом в целом?

    Как можно было бы определить современный детерминизм?

    Какие процессы называются обратимыми?

    Что выражает первый закон термодинамики?

    Дайте простую формулировку второго закона термодинамики.

    Как можно сформулировать этот же закон с помощью понятия энтропии?

    Как происходит эволюция в закрытых системах?

    Кто впервые выдвинул идею "тепловой смерти Вселенной" и в чем ее несостоятельность по современным представлениям?

    Как происходит самоорганизация в открытых системах?

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственное образовательное учреждение

Высшего профессионального образования

Российский государственный торгово-экономический университет

УФИМСКИЙ ИНСТИТУТ

Факультет юриспруденции и заочного обучения

Заочное обучение (5,5 лет)

Специальность "Бухгалтерский учет анализ и аудит"

Курсовая работа

По предмету: Концепции современного естествознания

Фамилия: Ситдикова

Имя: Эльвира

Отчество: Закиевна

Контрольная работа выслана в университет

Фамилия преподавателя: Хамидуллин Явдат Накипович

Введение

1.1 Появление идеи Т.С.В.

2. Закон возрастания энтропии

2.2 Возможность энтропии во Вселенной

3. Тепловая смерть Вселенной в научной картине Мира\

3.1 Термодинамический парадокс

3.2 Термодинамический парадокс в релятивистских космологических моделях

3.3 Термодинамический парадокс в космологии и постнеклассическая картина мира

Заключение

Литература

Введение

Тепловая смерть Вселенной (Т.С. В.) - это вывод о том, что все виды энергии во Вселенной в конце концов должны перейти в энергию теплового движения, которая равномерно распределится по веществу Вселенной, после чего в ней прекратятся все макроскопические процессы. Этот вывод был сформулирован Р. Клаузиусом (1865) на основе второго начала термодинамики. Согласно второму началу, любая физическая система, не обменивающаяся энергией с другими системами (для Вселенной в целом такой обмен, очевидно, исключен), стремится к наиболее вероятному равновесному состоянию - к так называемому состоянию с максимумом энтропии. Такое состояние соответствовало бы Т. С.В. Ещё до создания современной космологии были сделаны многочисленные попытки опровергнуть вывод о Т. С.В. Наиболее известна из них флуктуационная гипотеза Л. Больцмана (1872), согласно которой Вселенная извечно пребывает в равновесном изотермическом состоянии, но по закону случая то в одном, то в другом её месте иногда происходят отклонения от этого состояния; они происходят тем реже, чем большую область захватывают и чем значительнее степень отклонения. Современной космологией установлено, что ошибочен не только вывод о Т.С.В., но ошибочны и ранние попытки его опровержения. Связано это с тем, что не принимались во внимание существенные физические факторы и прежде всего тяготение. С учётом тяготения однородное изотермическое распределение вещества вовсе не является наиболее вероятным и не соответствует максимуму энтропии. Наблюдения показывают, что Вселенная резко нестационарна. Она расширяется, и почти однородное в начале расширения вещество в дальнейшем под действием сил тяготения распадается на отдельные объекты, образуются скопления галактик, галактики, звёзды, планеты. Все эти процессы естественны, идут с ростом энтропии и не требуют нарушения законов термодинамики. Они и в будущем с учётом тяготения не приведут к однородному изотермическому состоянию Вселенной - к Т. С.В. Вселенная всегда нестатична и непрерывно эволюционирует. Термодинамический парадокс в космологии, сформулированный во второй половине ХIХ века, непрерывно будоражит с тех пор научное сообщество. Дело в том, что он затронул наиболее глубинные структуры научной картины мира. Хотя многочисленные попытки разрешения этого парадокса приводили всегда лишь к частным успехам, они порождали новые, нетривиальные физические идеи, модели, теории. Термодинамический парадокс выступает неиссякаемым источником новых научных знаний. Вместе с тем, его становление в науке оказалось опутанным множеством предубеждений и совершенно неверных интерпретаций. Необходим новый взгляд на эту, казалось бы, довольно хорошо изученную проблему, которая приобретает нетрадиционный смысл в постнеклассической науке.

1. Идея Тепловой смерти Вселенной

1.1 Появление идеи Т.С.В.

Угроза тепловой смерти Вселенной, как мы уже говорили ранее, была высказана в середине ХIХ в. Томсоном и Клаузиусом, когда был сформулирован закон возрастания энтропии в необратимых процессах. Тепловая смерть - это такое состояние вещества и энергии во Вселенной, когда исчезли градиенты параметров, их характеризующих. Развитие принципа необратимости, принципа возрастания энтропии состояло в распространении этого принципа на Вселенную в целом, что и было сделано Клаузиусом.

Итак, согласно второму началу все физические процессы протекают в направлении передачи тепла от более горячих тел к менее горячим, а это означает, что медленно, но верно идет процесс выравнивания температуры во Вселенной. Следовательно, в будущем ожидается исчезновение температурных различий и превращение всей мировой энергии в тепловую, равномерно распределенную во Вселенной. Вывод Клаузиуса был следующим:

1. Энергия мира постоянна

2. Энтропия мира стремится к максимуму.

Таким образом, тепловая смерть Вселенной означает полное прекращение всех физических процессов вследствие перехода Вселенной в равновесное состояние с максимальной энтропией.

Больцман, открывший связь энтропии S и статистического веса P, считал, что нынешнее неоднородное состояние Вселенной есть грандиозная флуктуация*, хотя ее возникновение имеет ничтожно малую вероятность. Современники Больцмана не признавали его взглядов, что привело к жестокой критике его работ и, по-видимому, привело к болезненному состоянию и самоубийству Больцмана в 1906 г.

Обратившись к исходным формулировкам идеи тепловой смерти Вселенной, можно видеть, что они далеко не во всем соответствуют их хорошо известным интерпретациям, сквозь призму которых эти формулировки нами обычно воспринимаются. Принято говорить о теории тепловой смерти или термодинамическом парадоксе В. Томсона и Р. Клаузиуса.

Но, во-первых, соответствующие мысли этих авторов далеко не во всем совпадают, во-вторых, в приводимых ниже высказываниях ни теории, ни парадокса не содержится.

В. Томсон, анализируя проявляющуюся в природе общую тенденцию к рассеянию механической энергии, не распространял ее на мир как целое. Он экстраполировал принцип возрастания энтропии лишь на протекающие в природе крупномасштабные процессы. Напротив, Клаузиус предложил экстраполяцию этого принципа именно на Вселенную как целое, выступавшую для него всеобъемлющей физической системой. По словам Клаузиуса "общее состояние Вселенной должно все больше и все больше изменяться" в направлении, определяемом принципом возрастания энтропии и, следовательно, это состояние должно непрерывно приближаться к некоторому предельному состоянию Флуктуации и проблема физических границ 2-го Начала термодинамики. Пожалуй, впервые термодинамический аспект в космологии обозначил еще Ньютон. Именно он подметил эффект "трения" в часовом механизме Вселенной - тенденцию, которую в середине XIX в. назвали ростом энтропии. В духе своего времени Ньютон призвал на помощь Господа Бога. Он и был приставлен сэром Исааком к слежению за подзаводом и ремонтом этих "часов".

В рамках космологии термодинамический парадокс был осознан в середине XIX в. Дискуссия о парадоксе породила ряд блестящих идей широкого научного значения ("шредингерово" объяснение Л. Больцманом "антиэнтропийности" жизни; введение им флуктуаций в термодинамику, фундаментальные следствия чего в физике не исчерпаны до сих пор; его же грандиозная космологическая флуктуационная гипотеза, за концептуальные рамки которой физика в проблеме "тепловой смерти" Вселенной так еще и не вышла; глубокая и новаторская, но тем не менее исторически ограниченная флуктуационная трактовка Второго Начала.

1.2 Взгляд на Т.С.В. из ХХ века

Современное состояние науки также не согласуется с предположением о тепловой смерти Вселенной. Прежде всего, этот вывод имеет отношение к изолированной системе и не ясно, почему Вселенную можно относить к таким системам.

Во Вселенной действует поле тяготения, которое не принималось Больцманом во внимание, а оно ответственно за появление Звезд и Галактик: силы тяготения могут привести к образованию структуры из хаоса, могут породить Звезды из Космической пыли. Интересно дальнейшее развитие термодинамики и с ней на идею о Т. С.В. На протяжении XIX века были сформулированы основные положения (начала) термодинамики изолированных систем. В первой половине XX века термодинамика развивалась в основном не вглубь, а вширь, возникали различные ее разделы: техническая, химическая, физическая, биологическая и т.д. термодинамики. Только в сороковых годах появились работы по термодинамике открытых систем вблизи точки равновесия, а в восьмидесятых годах возникла синергетика. Последнюю можно трактовать как термодинамику открытых систем вдали от точки равновесия. Итак, современное естествознание отвергает концепцию "тепловой смерти" применительно к Вселенной в целом. Дело в том, что Клаузиус прибегнул в своих рассуждениях к следующим экстраполяциям:

1. Вселенная рассматривается как замкнутая система.

2. Эволюция мира может быть описана как смена его состояний.

тепловая смерть вселенная энтропия

Для мира как целого состояния с максимальной энтропией это имеет смысл, как и для любой конечной системы. Но сама по себе правомочность этих экстраполяций весьма сомнительна, хотя связанные с ними проблемы представляют трудность и для современной физической науки.

2. Закон возрастания энтропии

2.1 Вывод закона возрастания энтропии

Применим неравенство Клаузиуса для описания необратимого кругового термодинамического процесса, изображенного на рис 1.

«Смотри - лучи солнца, не могут пробиться сквозь серое небо
и все твои мысли, молитвы о помощи...
Пути пройдены, нам некуда бежать. И осторожно, касаясь пальцем звезд,
Я понимаю … но, неизбежно то, что слишком поздно…»

Английский физик Уильям Томсон (лорд Кельвин), один из основателей термодинамики в 1852 году выдвинул гипотезу о тепловой смерти Вселенной.

"Тепловая смерть" - это термин в термодинамике, описывающий конечное состояние любой замкнутой термодинамической системы, когда все виды энергии переходят в тепловую энергию. При этом термодинамическая энтропия системы максимальна.

Тогда «тепловая смерть Вселенной» это состояние Вселенной, когда все виды энергии в ней перейдут в энергию теплового движения, которая равномерно распределится по всей Вселенной. После этого все термодинамические процессы во Вселенной должны прекратиться.

Томсон считал, что материальная Вселенная, то есть звезды, планеты и прочие небесные тела, является единой, замкнутой, изолированной системой. Ведь другой такой же Вселенной нет. А если так, то второе начало термодинамики полностью применимо ко всему космосу и, стало быть, в конце концов наш разнообразный и веселый мир ждет унылая «тепловая смерть»...

В 1865 году известный физик Р. Клаузиус , основываясь на втором законе термодинамики сделал теоретический вывод о тепловой смерти Вселенной. Согласно второму началу термодинамики, любая замкнутая физическая система, т. е. не обменивающаяся энергией с другими системами, стремится к наиболее вероятному равновесному состоянию, т.е. к состоянию теплового равновесия, что соответствует максимуму энтропии.

Рудольф Клаузиус утверждал, что хотя энергия некоторой системы и остается постоянной (первое начало термодинамики), однако с течением времени она лишается способности к превращениям, а значит и способности совершать работу. Это означает, что всякая термодинамическая система со временем "деградирует", наступает "тепловая смерть".

Он согласился с выводом Томсона и написал: «.. энтропия Вселенной стремится к некоторому максимуму. Чем больше Вселенная приближается к этому предельному состоянию, ...тем больше исчезают поводы к дальнейшим изменениям, а если это состояние было бы наконец-то достигнуто, то больше не происходило бы никаких дальнейших изменений, и Вселенная находилась бы в некотором мертвом состоянии инерции».

Теория «тепловой смерти» находилась в противоречии с ньютоновской вечной Вселенной. Действительно, если рассмотреть Вселенную как изолированную термодинамическую систему, то, учитывая ее бесконечный возраст, на основании закона возрастания энтропии можно сделать вывод о достижении ею уже максимума энтропии, то есть состояния термодинамического равновесия. Но в реально окружающей нас Вселенной этого не наблюдается.

Попытка избежать указанного противоречия гипотезы тепловой смерти Вселенной была предпринята Больцманом , который предположил, что у системы и в состоянии термодинамического равновесия могут наблюдаться небольшие изменения - флуктуации термодинамических параметров (температуры, давления, объема).

Вселенная с энергетической точки зрения уже мертва, но отдельные ее области подвержены флуктуациям.

И наша часть бесконечной Вселенной, все пространство, до которого достигает взгляд человека, находится в режиме огромной, ныне затухающей флуктуации. А если считать, что наблюдаемая Вселенная является следствием такой флуктуации, то противоречия парадокса о тепловой смерти Вселенной исчезают.

В 1909 году против тепловой смерти выступил известный шведский ученый Сванте Август Аррениус , занимавшийся вопросами образования и эволюции небесных тел.

Аррениус писал: «Если бы Клаузиус был прав, то эта «смерть тепла» за бесконечно долгое время существования мира давно бы уже наступила, чего, однако, не случилось. Или нужно допустить, что мир существует не бесконечно долго и что он имел свое начало; это, однако, противоречит первой части положения Клаузиуса, устанавливающей, что энергия мира постоянна, - ибо тогда пришлось бы допустить, что вся энергия возникла в момент творения».

В 20 веке Общая Теория Относительности А. Эйнштейна разрешила многие противоречия, существовавшие в классической физике.

Однако и в наше время в науке нет единого мнения о строении Вселенной и ее возникновении. Хотя современной космологией однозначно установлено , что Вселенная, возраст которой определен в 13,72 млрд лет, не стационарна.

Среди ученых не утихают споры о будущем Вселенной, о ее «бесконечном расширении», о существовании «скрытой материи», огромное количество которой может опровергнуть современные представления о свойствах Вселенной.

А понятие «тепловой смерти Вселенной» стало первым шагом к осознанию возможной конечности существования Вселенной, хотя и неизвестно, когда и по какому сценарию возможна её гибель.



Рассказать друзьям